PR-URL: https://github.com/nodejs/node/pull/60960 Refs: https://github.com/nodejs/node/issues/56241 Reviewed-By: Geoffrey Booth <webadmin@geoffreybooth.com>
74 KiB
Modules: node:module API
The Module object
- Type: {Object}
Provides general utility methods when interacting with instances of
Module, the module variable often seen in CommonJS modules. Accessed
via import 'node:module' or require('node:module').
module.builtinModules
- Type: {string[]}
A list of the names of all modules provided by Node.js. Can be used to verify if a module is maintained by a third party or not.
module in this context isn't the same object that's provided
by the module wrapper. To access it, require the Module module:
// module.mjs
// In an ECMAScript module
import { builtinModules as builtin } from 'node:module';
// module.cjs
// In a CommonJS module
const builtin = require('node:module').builtinModules;
module.createRequire(filename)
filename{string|URL} Filename to be used to construct the require function. Must be a file URL object, file URL string, or absolute path string.- Returns: {require} Require function
import { createRequire } from 'node:module';
const require = createRequire(import.meta.url);
// sibling-module.js is a CommonJS module.
const siblingModule = require('./sibling-module');
module.findPackageJSON(specifier[, base])
Stability: 1.1 - Active Development
specifier{string|URL} The specifier for the module whosepackage.jsonto retrieve. When passing a bare specifier, thepackage.jsonat the root of the package is returned. When passing a relative specifier or an absolute specifier, the closest parentpackage.jsonis returned.base{string|URL} The absolute location (file:URL string or FS path) of the containing module. For CJS, use__filename(not__dirname!); for ESM, useimport.meta.url. You do not need to pass it ifspecifieris anabsolute specifier.- Returns: {string|undefined} A path if the
package.jsonis found. Whenspecifieris a package, the package's rootpackage.json; when a relative or unresolved, the closestpackage.jsonto thespecifier.
Caveat: Do not use this to try to determine module format. There are many things affecting that determination; the
typefield of package.json is the least definitive (ex file extension supersedes it, and a loader hook supersedes that).
Caveat: This currently leverages only the built-in default resolver; if
resolvecustomization hooks are registered, they will not affect the resolution. This may change in the future.
/path/to/project
├ packages/
├ bar/
├ bar.js
└ package.json // name = '@foo/bar'
└ qux/
├ node_modules/
└ some-package/
└ package.json // name = 'some-package'
├ qux.js
└ package.json // name = '@foo/qux'
├ main.js
└ package.json // name = '@foo'
// /path/to/project/packages/bar/bar.js
import { findPackageJSON } from 'node:module';
findPackageJSON('..', import.meta.url);
// '/path/to/project/package.json'
// Same result when passing an absolute specifier instead:
findPackageJSON(new URL('../', import.meta.url));
findPackageJSON(import.meta.resolve('../'));
findPackageJSON('some-package', import.meta.url);
// '/path/to/project/packages/bar/node_modules/some-package/package.json'
// When passing an absolute specifier, you might get a different result if the
// resolved module is inside a subfolder that has nested `package.json`.
findPackageJSON(import.meta.resolve('some-package'));
// '/path/to/project/packages/bar/node_modules/some-package/some-subfolder/package.json'
findPackageJSON('@foo/qux', import.meta.url);
// '/path/to/project/packages/qux/package.json'
// /path/to/project/packages/bar/bar.js
const { findPackageJSON } = require('node:module');
const { pathToFileURL } = require('node:url');
const path = require('node:path');
findPackageJSON('..', __filename);
// '/path/to/project/package.json'
// Same result when passing an absolute specifier instead:
findPackageJSON(pathToFileURL(path.join(__dirname, '..')));
findPackageJSON('some-package', __filename);
// '/path/to/project/packages/bar/node_modules/some-package/package.json'
// When passing an absolute specifier, you might get a different result if the
// resolved module is inside a subfolder that has nested `package.json`.
findPackageJSON(pathToFileURL(require.resolve('some-package')));
// '/path/to/project/packages/bar/node_modules/some-package/some-subfolder/package.json'
findPackageJSON('@foo/qux', __filename);
// '/path/to/project/packages/qux/package.json'
module.isBuiltin(moduleName)
moduleName{string} name of the module- Returns: {boolean} returns true if the module is builtin else returns false
import { isBuiltin } from 'node:module';
isBuiltin('node:fs'); // true
isBuiltin('fs'); // true
isBuiltin('wss'); // false
module.register(specifier[, parentURL][, options])
Stability: 1.1 - Active development
specifier{string|URL} Customization hooks to be registered; this should be the same string that would be passed toimport(), except that if it is relative, it is resolved relative toparentURL.parentURL{string|URL} If you want to resolvespecifierrelative to a base URL, such asimport.meta.url, you can pass that URL here. Default:'data:'options{Object}parentURL{string|URL} If you want to resolvespecifierrelative to a base URL, such asimport.meta.url, you can pass that URL here. This property is ignored if theparentURLis supplied as the second argument. Default:'data:'data{any} Any arbitrary, cloneable JavaScript value to pass into theinitializehook.transferList{Object[]} transferable objects to be passed into theinitializehook.
Register a module that exports hooks that customize Node.js module resolution and loading behavior. See Customization hooks.
This feature requires --allow-worker if used with the Permission Model.
module.registerHooks(options)
Stability: 1.2 - Release candidate
options{Object}load{Function|undefined} See load hook. Default:undefined.resolve{Function|undefined} See resolve hook. Default:undefined.
Register hooks that customize Node.js module resolution and loading behavior. See Customization hooks.
module.stripTypeScriptTypes(code[, options])
Stability: 1.2 - Release candidate
code{string} The code to strip type annotations from.options{Object}mode{string} Default:'strip'. Possible values are:'strip'Only strip type annotations without performing the transformation of TypeScript features.'transform'Strip type annotations and transform TypeScript features to JavaScript.
sourceMap{boolean} Default:false. Only whenmodeis'transform', iftrue, a source map will be generated for the transformed code.sourceUrl{string} Specifies the source url used in the source map.
- Returns: {string} The code with type annotations stripped.
module.stripTypeScriptTypes()removes type annotations from TypeScript code. It can be used to strip type annotations from TypeScript code before running it withvm.runInContext()orvm.compileFunction(). By default, it will throw an error if the code contains TypeScript features that require transformation such asEnums, see type-stripping for more information. When mode is'transform', it also transforms TypeScript features to JavaScript, see transform TypeScript features for more information. When mode is'strip', source maps are not generated, because locations are preserved. IfsourceMapis provided, when mode is'strip', an error will be thrown.
WARNING: The output of this function should not be considered stable across Node.js versions, due to changes in the TypeScript parser.
import { stripTypeScriptTypes } from 'node:module';
const code = 'const a: number = 1;';
const strippedCode = stripTypeScriptTypes(code);
console.log(strippedCode);
// Prints: const a = 1;
const { stripTypeScriptTypes } = require('node:module');
const code = 'const a: number = 1;';
const strippedCode = stripTypeScriptTypes(code);
console.log(strippedCode);
// Prints: const a = 1;
If sourceUrl is provided, it will be used appended as a comment at the end of the output:
import { stripTypeScriptTypes } from 'node:module';
const code = 'const a: number = 1;';
const strippedCode = stripTypeScriptTypes(code, { mode: 'strip', sourceUrl: 'source.ts' });
console.log(strippedCode);
// Prints: const a = 1\n\n//# sourceURL=source.ts;
const { stripTypeScriptTypes } = require('node:module');
const code = 'const a: number = 1;';
const strippedCode = stripTypeScriptTypes(code, { mode: 'strip', sourceUrl: 'source.ts' });
console.log(strippedCode);
// Prints: const a = 1\n\n//# sourceURL=source.ts;
When mode is 'transform', the code is transformed to JavaScript:
import { stripTypeScriptTypes } from 'node:module';
const code = `
namespace MathUtil {
export const add = (a: number, b: number) => a + b;
}`;
const strippedCode = stripTypeScriptTypes(code, { mode: 'transform', sourceMap: true });
console.log(strippedCode);
// Prints:
// var MathUtil;
// (function(MathUtil) {
// MathUtil.add = (a, b)=>a + b;
// })(MathUtil || (MathUtil = {}));
// # sourceMappingURL=data:application/json;base64, ...
const { stripTypeScriptTypes } = require('node:module');
const code = `
namespace MathUtil {
export const add = (a: number, b: number) => a + b;
}`;
const strippedCode = stripTypeScriptTypes(code, { mode: 'transform', sourceMap: true });
console.log(strippedCode);
// Prints:
// var MathUtil;
// (function(MathUtil) {
// MathUtil.add = (a, b)=>a + b;
// })(MathUtil || (MathUtil = {}));
// # sourceMappingURL=data:application/json;base64, ...
module.syncBuiltinESMExports()
The module.syncBuiltinESMExports() method updates all the live bindings for
builtin ES Modules to match the properties of the CommonJS exports. It
does not add or remove exported names from the ES Modules.
const fs = require('node:fs');
const assert = require('node:assert');
const { syncBuiltinESMExports } = require('node:module');
fs.readFile = newAPI;
delete fs.readFileSync;
function newAPI() {
// ...
}
fs.newAPI = newAPI;
syncBuiltinESMExports();
import('node:fs').then((esmFS) => {
// It syncs the existing readFile property with the new value
assert.strictEqual(esmFS.readFile, newAPI);
// readFileSync has been deleted from the required fs
assert.strictEqual('readFileSync' in fs, false);
// syncBuiltinESMExports() does not remove readFileSync from esmFS
assert.strictEqual('readFileSync' in esmFS, true);
// syncBuiltinESMExports() does not add names
assert.strictEqual(esmFS.newAPI, undefined);
});
Module compile cache
The module compile cache can be enabled either using the module.enableCompileCache()
method or the NODE_COMPILE_CACHE=dir environment variable. After it is enabled,
whenever Node.js compiles a CommonJS, a ECMAScript Module, or a TypeScript module, it will
use on-disk V8 code cache persisted in the specified directory to speed up the compilation.
This may slow down the first load of a module graph, but subsequent loads of the same module
graph may get a significant speedup if the contents of the modules do not change.
To clean up the generated compile cache on disk, simply remove the cache directory. The cache
directory will be recreated the next time the same directory is used for for compile cache
storage. To avoid filling up the disk with stale cache, it is recommended to use a directory
under the os.tmpdir(). If the compile cache is enabled by a call to
module.enableCompileCache() without specifying the directory, Node.js will use
the NODE_COMPILE_CACHE=dir environment variable if it's set, or defaults
to path.join(os.tmpdir(), 'node-compile-cache') otherwise. To locate the compile cache
directory used by a running Node.js instance, use module.getCompileCacheDir().
The enabled module compile cache can be disabled by the NODE_DISABLE_COMPILE_CACHE=1
environment variable. This can be useful when the compile cache leads to unexpected or
undesired behaviors (e.g. less precise test coverage).
At the moment, when the compile cache is enabled and a module is loaded afresh, the
code cache is generated from the compiled code immediately, but will only be written
to disk when the Node.js instance is about to exit. This is subject to change. The
module.flushCompileCache() method can be used to ensure the accumulated code cache
is flushed to disk in case the application wants to spawn other Node.js instances
and let them share the cache long before the parent exits.
The compile cache layout on disk is an implementation detail and should not be relied upon. The compile cache generated is typically only reusable in the same version of Node.js, and should be not assumed to be compatible across different versions of Node.js.
Portability of the compile cache
By default, caches are invalidated when the absolute paths of the modules being cached are changed. To keep the cache working after moving the project directory, enable portable compile cache. This allows previously compiled modules to be reused across different directory locations as long as the layout relative to the cache directory remains the same. This would be done on a best-effort basis. If Node.js cannot compute the location of a module relative to the cache directory, the module will not be cached.
There are two ways to enable the portable mode:
-
Using the portable option in
module.enableCompileCache():// Non-portable cache (default): cache breaks if project is moved module.enableCompileCache({ directory: '/path/to/cache/storage/dir' }); // Portable cache: cache works after the project is moved module.enableCompileCache({ directory: '/path/to/cache/storage/dir', portable: true }); -
Setting the environment variable:
NODE_COMPILE_CACHE_PORTABLE=1
Limitations of the compile cache
Currently when using the compile cache with V8 JavaScript code coverage, the coverage being collected by V8 may be less precise in functions that are deserialized from the code cache. It's recommended to turn this off when running tests to generate precise coverage.
Compilation cache generated by one version of Node.js can not be reused by a different version of Node.js. Cache generated by different versions of Node.js will be stored separately if the same base directory is used to persist the cache, so they can co-exist.
module.constants.compileCacheStatus
The following constants are returned as the status field in the object returned by
module.enableCompileCache() to indicate the result of the attempt to enable the
module compile cache.
| Constant | Description |
|---|---|
ENABLED |
Node.js has enabled the compile cache successfully. The directory used to store the
compile cache will be returned in the directory field in the
returned object.
|
ALREADY_ENABLED |
The compile cache has already been enabled before, either by a previous call to
module.enableCompileCache(), or by the NODE_COMPILE_CACHE=dir
environment variable. The directory used to store the
compile cache will be returned in the directory field in the
returned object.
|
FAILED |
Node.js fails to enable the compile cache. This can be caused by the lack of
permission to use the specified directory, or various kinds of file system errors.
The detail of the failure will be returned in the message field in the
returned object.
|
DISABLED |
Node.js cannot enable the compile cache because the environment variable
NODE_DISABLE_COMPILE_CACHE=1 has been set.
|
module.enableCompileCache([options])
options{string|Object} Optional. If a string is passed, it is considered to beoptions.directory.directory{string} Optional. Directory to store the compile cache. If not specified, the directory specified by theNODE_COMPILE_CACHE=direnvironment variable will be used if it's set, orpath.join(os.tmpdir(), 'node-compile-cache')otherwise.portable{boolean} Optional. Iftrue, enables portable compile cache so that the cache can be reused even if the project directory is moved. This is a best-effort feature. If not specified, it will depend on whether the environment variableNODE_COMPILE_CACHE_PORTABLE=1is set.
- Returns: {Object}
status{integer} One of themodule.constants.compileCacheStatusmessage{string|undefined} If Node.js cannot enable the compile cache, this contains the error message. Only set ifstatusismodule.constants.compileCacheStatus.FAILED.directory{string|undefined} If the compile cache is enabled, this contains the directory where the compile cache is stored. Only set ifstatusismodule.constants.compileCacheStatus.ENABLEDormodule.constants.compileCacheStatus.ALREADY_ENABLED.
Enable module compile cache in the current Node.js instance.
For general use cases, it's recommended to call module.enableCompileCache() without
specifying the options.directory, so that the directory can be overridden by the
NODE_COMPILE_CACHE environment variable when necessary.
Since compile cache is supposed to be a optimization that is not mission critical, this
method is designed to not throw any exception when the compile cache cannot be enabled.
Instead, it will return an object containing an error message in the message field to
aid debugging. If compile cache is enabled successfully, the directory field in the
returned object contains the path to the directory where the compile cache is stored. The
status field in the returned object would be one of the module.constants.compileCacheStatus
values to indicate the result of the attempt to enable the module compile cache.
This method only affects the current Node.js instance. To enable it in child worker threads,
either call this method in child worker threads too, or set the
process.env.NODE_COMPILE_CACHE value to compile cache directory so the behavior can
be inherited into the child workers. The directory can be obtained either from the
directory field returned by this method, or with module.getCompileCacheDir().
module.flushCompileCache()
Flush the module compile cache accumulated from modules already loaded in the current Node.js instance to disk. This returns after all the flushing file system operations come to an end, no matter they succeed or not. If there are any errors, this will fail silently, since compile cache misses should not interfere with the actual operation of the application.
module.getCompileCacheDir()
- Returns: {string|undefined} Path to the module compile cache directory if it is enabled,
or
undefinedotherwise.
Customization Hooks
Node.js currently supports two types of module customization hooks:
module.registerHooks(options): takes synchronous hook functions that are run directly on the thread where the modules are loaded.module.register(specifier[, parentURL][, options]): takes specifier to a module that exports asynchronous hook functions. The functions are run on a separate loader thread.
The asynchronous hooks incur extra overhead from inter-thread communication,
and have several caveats especially
when customizing CommonJS modules in the module graph.
In most cases, it's recommended to use synchronous hooks via module.registerHooks()
for simplicity.
Synchronous customization hooks
Stability: 1.2 - Release candidate
Registration of synchronous customization hooks
To register synchronous customization hooks, use module.registerHooks(), which
takes synchronous hook functions directly in-line.
// register-hooks.js
import { registerHooks } from 'node:module';
registerHooks({
resolve(specifier, context, nextResolve) { /* implementation */ },
load(url, context, nextLoad) { /* implementation */ },
});
// register-hooks.js
const { registerHooks } = require('node:module');
registerHooks({
resolve(specifier, context, nextResolve) { /* implementation */ },
load(url, context, nextLoad) { /* implementation */ },
});
Registering hooks before application code runs with flags
The hooks can be registered before the application code is run by using the
--import or --require flag:
node --import ./register-hooks.js ./my-app.js
node --require ./register-hooks.js ./my-app.js
The specifier passed to --import or --require can also come from a package:
node --import some-package/register ./my-app.js
node --require some-package/register ./my-app.js
Where some-package has an "exports" field defining the /register
export to map to a file that calls registerHooks(), like the
register-hooks.js examples above.
Using --import or --require ensures that the hooks are registered before any
application code is loaded, including the entry point of the application and for
any worker threads by default as well.
Registering hooks before application code runs programmatically
Alternatively, registerHooks() can be called from the entry point.
If the entry point needs to load other modules and the loading process needs to be
customized, load them using either require() or dynamic import() after the hooks
are registered. Do not use static import statements to load modules that need to be
customized in the same module that registers the hooks, because static import statements
are evaluated before any code in the importer module is run, including the call to
registerHooks(), regardless of where the static import statements appear in the importer
module.
import { registerHooks } from 'node:module';
registerHooks({ /* implementation of synchronous hooks */ });
// If loaded using static import, the hooks would not be applied when loading
// my-app.mjs, because statically imported modules are all executed before its
// importer regardless of where the static import appears.
// import './my-app.mjs';
// my-app.mjs must be loaded dynamically to ensure the hooks are applied.
await import('./my-app.mjs');
const { registerHooks } = require('node:module');
registerHooks({ /* implementation of synchronous hooks */ });
import('./my-app.mjs');
// Or, if my-app.mjs does not have top-level await or it's a CommonJS module,
// require() can also be used:
// require('./my-app.mjs');
Registering hooks before application code runs with a data: URL
Alternatively, inline JavaScript code can be embedded in data: URLs to register
the hooks before the application code runs. For example,
node --import 'data:text/javascript,import {registerHooks} from "node:module"; registerHooks(/* hooks code */);' ./my-app.js
Convention of hooks and chaining
Hooks are part of a chain, even if that chain consists of only one custom (user-provided) hook and the default hook, which is always present.
Hook functions nest: each one must always return a plain object, and chaining happens
as a result of each function calling next<hookName>(), which is a reference to
the subsequent loader's hook (in LIFO order).
It's possible to call registerHooks() more than once:
// entrypoint.mjs
import { registerHooks } from 'node:module';
const hook1 = { /* implementation of hooks */ };
const hook2 = { /* implementation of hooks */ };
// hook2 runs before hook1.
registerHooks(hook1);
registerHooks(hook2);
// entrypoint.cjs
const { registerHooks } = require('node:module');
const hook1 = { /* implementation of hooks */ };
const hook2 = { /* implementation of hooks */ };
// hook2 runs before hook1.
registerHooks(hook1);
registerHooks(hook2);
In this example, the registered hooks will form chains. These chains run
last-in, first-out (LIFO). If both hook1 and hook2 define a resolve
hook, they will be called like so (note the right-to-left,
starting with hook2.resolve, then hook1.resolve, then the Node.js default):
Node.js default resolve ← hook1.resolve ← hook2.resolve
The same applies to all the other hooks.
A hook that returns a value lacking a required property triggers an exception. A
hook that returns without calling next<hookName>() and without returning
shortCircuit: true also triggers an exception. These errors are to help
prevent unintentional breaks in the chain. Return shortCircuit: true from a
hook to signal that the chain is intentionally ending at your hook.
If a hook should be applied when loading other hook modules, the other hook modules should be loaded after the hook is registered.
Hook functions accepted by module.registerHooks()
The module.registerHooks() method accepts the following synchronous hook functions.
function resolve(specifier, context, nextResolve) {
// Take an `import` or `require` specifier and resolve it to a URL.
}
function load(url, context, nextLoad) {
// Take a resolved URL and return the source code to be evaluated.
}
Synchronous hooks are run in the same thread and the same realm where the modules are loaded, the code in the hook function can pass values to the modules being referenced directly via global variables or other shared states.
Unlike the asynchronous hooks, the synchronous hooks are not inherited into child worker
threads by default, though if the hooks are registered using a file preloaded by
--import or --require, child worker threads can inherit the preloaded scripts
via process.execArgv inheritance. See the documentation of Worker for details.
Synchronous resolve(specifier, context, nextResolve)
specifier{string}context{Object}conditions{string[]} Export conditions of the relevantpackage.jsonimportAttributes{Object} An object whose key-value pairs represent the attributes for the module to importparentURL{string|undefined} The module importing this one, or undefined if this is the Node.js entry point
nextResolve{Function} The subsequentresolvehook in the chain, or the Node.js defaultresolvehook after the last user-suppliedresolvehookspecifier{string}context{Object|undefined} When omitted, the defaults are provided. When provided, defaults are merged in with preference to the provided properties.
- Returns: {Object}
format{string|null|undefined} A hint to theloadhook (it might be ignored). It can be a module format (such as'commonjs'or'module') or an arbitrary value like'css'or'yaml'.importAttributes{Object|undefined} The import attributes to use when caching the module (optional; if excluded the input will be used)shortCircuit{undefined|boolean} A signal that this hook intends to terminate the chain ofresolvehooks. Default:falseurl{string} The absolute URL to which this input resolves
The resolve hook chain is responsible for telling Node.js where to find and
how to cache a given import statement or expression, or require call. It can
optionally return a format (such as 'module') as a hint to the load hook. If
a format is specified, the load hook is ultimately responsible for providing
the final format value (and it is free to ignore the hint provided by
resolve); if resolve provides a format, a custom load hook is required
even if only to pass the value to the Node.js default load hook.
Import type attributes are part of the cache key for saving loaded modules into
the internal module cache. The resolve hook is responsible for returning an
importAttributes object if the module should be cached with different
attributes than were present in the source code.
The conditions property in context is an array of conditions that will be used
to match package exports conditions for this resolution
request. They can be used for looking up conditional mappings elsewhere or to
modify the list when calling the default resolution logic.
The current package exports conditions are always in
the context.conditions array passed into the hook. To guarantee default
Node.js module specifier resolution behavior when calling defaultResolve, the
context.conditions array passed to it must include all elements of the
context.conditions array originally passed into the resolve hook.
import { registerHooks } from 'node:module';
function resolve(specifier, context, nextResolve) {
// When calling `defaultResolve`, the arguments can be modified. For example,
// to change the specifier or to add applicable export conditions.
if (specifier.includes('foo')) {
specifier = specifier.replace('foo', 'bar');
return nextResolve(specifier, {
...context,
conditions: [...context.conditions, 'another-condition'],
});
}
// The hook can also skip default resolution and provide a custom URL.
if (specifier === 'special-module') {
return {
url: 'file:///path/to/special-module.mjs',
format: 'module',
shortCircuit: true, // This is mandatory if nextResolve() is not called.
};
}
// If no customization is needed, defer to the next hook in the chain which would be the
// Node.js default resolve if this is the last user-specified loader.
return nextResolve(specifier);
}
registerHooks({ resolve });
Synchronous load(url, context, nextLoad)
url{string} The URL returned by theresolvechaincontext{Object}conditions{string[]} Export conditions of the relevantpackage.jsonformat{string|null|undefined} The format optionally supplied by theresolvehook chain. This can be any string value as an input; input values do not need to conform to the list of acceptable return values described below.importAttributes{Object}
nextLoad{Function} The subsequentloadhook in the chain, or the Node.js defaultloadhook after the last user-suppliedloadhookurl{string}context{Object|undefined} When omitted, defaults are provided. When provided, defaults are merged in with preference to the provided properties. In the defaultnextLoad, if the module pointed to byurldoes not have explicit module type information,context.formatis mandatory.- Returns: {Object}
format{string} One of the acceptable module formats listed below.shortCircuit{undefined|boolean} A signal that this hook intends to terminate the chain ofloadhooks. Default:falsesource{string|ArrayBuffer|TypedArray} The source for Node.js to evaluate
The load hook provides a way to define a custom method for retrieving the
source code of a resolved URL. This would allow a loader to potentially avoid
reading files from disk. It could also be used to map an unrecognized format to
a supported one, for example yaml to module.
import { registerHooks } from 'node:module';
import { Buffer } from 'node:buffer';
function load(url, context, nextLoad) {
// The hook can skip default loading and provide a custom source code.
if (url === 'special-module') {
return {
source: 'export const special = 42;',
format: 'module',
shortCircuit: true, // This is mandatory if nextLoad() is not called.
};
}
// It's possible to modify the source code loaded by the next - possibly default - step,
// for example, replacing 'foo' with 'bar' in the source code of the module.
const result = nextLoad(url, context);
const source = typeof result.source === 'string' ?
result.source : Buffer.from(result.source).toString('utf8');
return {
source: source.replace(/foo/g, 'bar'),
...result,
};
}
registerHooks({ resolve });
In a more advanced scenario, this can also be used to transform an unsupported source to a supported one (see Examples below).
Accepted final formats returned by load
The final value of format must be one of the following:
format |
Description | Acceptable types for source returned by load |
|---|---|---|
'addon' |
Load a Node.js addon | {null} |
'builtin' |
Load a Node.js builtin module | {null} |
'commonjs-typescript' |
Load a Node.js CommonJS module with TypeScript syntax | {string|ArrayBuffer|TypedArray|null|undefined} |
'commonjs' |
Load a Node.js CommonJS module | {string|ArrayBuffer|TypedArray|null|undefined} |
'json' |
Load a JSON file | {string|ArrayBuffer|TypedArray} |
'module-typescript' |
Load an ES module with TypeScript syntax | {string|ArrayBuffer|TypedArray} |
'module' |
Load an ES module | {string|ArrayBuffer|TypedArray} |
'wasm' |
Load a WebAssembly module | {ArrayBuffer|TypedArray} |
The value of source is ignored for format 'builtin' because currently it is
not possible to replace the value of a Node.js builtin (core) module.
These types all correspond to classes defined in ECMAScript.
- The specific {ArrayBuffer} object is a {SharedArrayBuffer}.
- The specific {TypedArray} object is a {Uint8Array}.
If the source value of a text-based format (i.e., 'json', 'module')
is not a string, it is converted to a string using util.TextDecoder.
Asynchronous customization hooks
Stability: 1.1 - Active Development
Caveats of asynchronous customization hooks
The asynchronous customization hooks have many caveats and it is uncertain if their
issues can be resolved. Users are encouraged to use the synchronous customization hooks
via module.registerHooks() instead to avoid these caveats.
- Asynchronous hooks run on a separate thread, so the hook functions cannot directly mutate the global state of the modules being customized. It's typical to use message channels and atomics to pass data between the two or to affect control flows. See Communication with asynchronous module customization hooks.
- Asynchronous hooks do not affect all
require()calls in the module graph.- Custom
requirefunctions created usingmodule.createRequire()are not affected. - If the asynchronous
loadhook does not override thesourcefor CommonJS modules that go through it, the child modules loaded by those CommonJS modules via built-inrequire()would not be affected by the asynchronous hooks either.
- Custom
- There are several caveats that the asynchronous hooks need to handle when
customizing CommonJS modules. See asynchronous
resolvehook and asynchronousloadhook for details. - When
require()calls inside CommonJS modules are customized by asynchronous hooks, Node.js may need to load the source code of the CommonJS module multiple times to maintain compatibility with existing CommonJS monkey-patching. If the module code changes between loads, this may lead to unexpected behaviors.- As a side effect, if both asynchronous hooks and synchronous hooks are registered and the
asynchronous hooks choose to customize the CommonJS module, the synchronous hooks may be
invoked multiple times for the
require()calls in that CommonJS module.
- As a side effect, if both asynchronous hooks and synchronous hooks are registered and the
asynchronous hooks choose to customize the CommonJS module, the synchronous hooks may be
invoked multiple times for the
Registration of asynchronous customization hooks
Asynchronous customization hooks are registered using module.register() which takes
a path or URL to another module that exports the asynchronous hook functions.
Similar to registerHooks(), register() can be called in a module preloaded by --import or
--require, or called directly within the entry point.
// Use module.register() to register asynchronous hooks in a dedicated thread.
import { register } from 'node:module';
register('./hooks.mjs', import.meta.url);
// If my-app.mjs is loaded statically here as `import './my-app.mjs'`, since ESM
// dependencies are evaluated before the module that imports them,
// it's loaded _before_ the hooks are registered above and won't be affected.
// To ensure the hooks are applied, dynamic import() must be used to load ESM
// after the hooks are registered.
import('./my-app.mjs');
const { register } = require('node:module');
const { pathToFileURL } = require('node:url');
// Use module.register() to register asynchronous hooks in a dedicated thread.
register('./hooks.mjs', pathToFileURL(__filename));
import('./my-app.mjs');
In hooks.mjs:
// hooks.mjs
export async function resolve(specifier, context, nextResolve) {
/* implementation */
}
export async function load(url, context, nextLoad) {
/* implementation */
}
Unlike synchronous hooks, the asynchronous hooks would not run for these modules loaded in the file
that calls register():
// register-hooks.js
import { register, createRequire } from 'node:module';
register('./hooks.mjs', import.meta.url);
// Asynchronous hooks does not affect modules loaded via custom require()
// functions created by module.createRequire().
const userRequire = createRequire(__filename);
userRequire('./my-app-2.cjs'); // Hooks won't affect this
// register-hooks.js
const { register, createRequire } = require('node:module');
const { pathToFileURL } = require('node:url');
register('./hooks.mjs', pathToFileURL(__filename));
// Asynchronous hooks does not affect modules loaded via built-in require()
// in the module calling `register()`
require('./my-app-2.cjs'); // Hooks won't affect this
// .. or custom require() functions created by module.createRequire().
const userRequire = createRequire(__filename);
userRequire('./my-app-3.cjs'); // Hooks won't affect this
Asynchronous hooks can also be registered using a data: URL with the --import flag:
node --import 'data:text/javascript,import { register } from "node:module"; import { pathToFileURL } from "node:url"; register("my-instrumentation", pathToFileURL("./"));' ./my-app.js
Chaining of asynchronous customization hooks
Chaining of register() work similarly to registerHooks(). If synchronous and asynchronous
hooks are mixed, the synchronous hooks are always run first before the asynchronous
hooks start running, that is, in the last synchronous hook being run, its next
hook includes invocation of the asynchronous hooks.
// entrypoint.mjs
import { register } from 'node:module';
register('./foo.mjs', import.meta.url);
register('./bar.mjs', import.meta.url);
await import('./my-app.mjs');
// entrypoint.cjs
const { register } = require('node:module');
const { pathToFileURL } = require('node:url');
const parentURL = pathToFileURL(__filename);
register('./foo.mjs', parentURL);
register('./bar.mjs', parentURL);
import('./my-app.mjs');
If foo.mjs and bar.mjs define a resolve hook, they will be called like so
(note the right-to-left, starting with ./bar.mjs, then ./foo.mjs, then the Node.js default):
Node.js default ← ./foo.mjs ← ./bar.mjs
When using the asynchronous hooks, the registered hooks also affect subsequent
register calls, which takes care of loading hook modules. In the example above,
bar.mjs will be resolved and loaded via the hooks registered by foo.mjs
(because foo's hooks will have already been added to the chain). This allows
for things like writing hooks in non-JavaScript languages, so long as
earlier registered hooks transpile into JavaScript.
The register() method cannot be called from the thread running the hook module that
exports the asynchronous hooks or its dependencies.
Communication with asynchronous module customization hooks
Asynchronous hooks run on a dedicated thread, separate from the main thread that runs application code. This means mutating global variables won't affect the other thread(s), and message channels must be used to communicate between the threads.
The register method can be used to pass data to an initialize hook. The
data passed to the hook may include transferable objects like ports.
import { register } from 'node:module';
import { MessageChannel } from 'node:worker_threads';
// This example demonstrates how a message channel can be used to
// communicate with the hooks, by sending `port2` to the hooks.
const { port1, port2 } = new MessageChannel();
port1.on('message', (msg) => {
console.log(msg);
});
port1.unref();
register('./my-hooks.mjs', {
parentURL: import.meta.url,
data: { number: 1, port: port2 },
transferList: [port2],
});
const { register } = require('node:module');
const { pathToFileURL } = require('node:url');
const { MessageChannel } = require('node:worker_threads');
// This example showcases how a message channel can be used to
// communicate with the hooks, by sending `port2` to the hooks.
const { port1, port2 } = new MessageChannel();
port1.on('message', (msg) => {
console.log(msg);
});
port1.unref();
register('./my-hooks.mjs', {
parentURL: pathToFileURL(__filename),
data: { number: 1, port: port2 },
transferList: [port2],
});
Asynchronous hooks accepted by module.register()
The register method can be used to register a module that exports a set of
hooks. The hooks are functions that are called by Node.js to customize the
module resolution and loading process. The exported functions must have specific
names and signatures, and they must be exported as named exports.
export async function initialize({ number, port }) {
// Receives data from `register`.
}
export async function resolve(specifier, context, nextResolve) {
// Take an `import` or `require` specifier and resolve it to a URL.
}
export async function load(url, context, nextLoad) {
// Take a resolved URL and return the source code to be evaluated.
}
Asynchronous hooks are run in a separate thread, isolated from the main thread where
application code runs. That means it is a different realm. The hooks thread
may be terminated by the main thread at any time, so do not depend on
asynchronous operations (like console.log) to complete. They are inherited into
child workers by default.
initialize()
data{any} The data fromregister(loader, import.meta.url, { data }).
The initialize hook is only accepted by register. registerHooks() does
not support nor need it since initialization done for synchronous hooks can be run
directly before the call to registerHooks().
The initialize hook provides a way to define a custom function that runs in
the hooks thread when the hooks module is initialized. Initialization happens
when the hooks module is registered via register.
This hook can receive data from a register invocation, including
ports and other transferable objects. The return value of initialize can be a
{Promise}, in which case it will be awaited before the main application thread
execution resumes.
Module customization code:
// path-to-my-hooks.js
export async function initialize({ number, port }) {
port.postMessage(`increment: ${number + 1}`);
}
Caller code:
import assert from 'node:assert';
import { register } from 'node:module';
import { MessageChannel } from 'node:worker_threads';
// This example showcases how a message channel can be used to communicate
// between the main (application) thread and the hooks running on the hooks
// thread, by sending `port2` to the `initialize` hook.
const { port1, port2 } = new MessageChannel();
port1.on('message', (msg) => {
assert.strictEqual(msg, 'increment: 2');
});
port1.unref();
register('./path-to-my-hooks.js', {
parentURL: import.meta.url,
data: { number: 1, port: port2 },
transferList: [port2],
});
const assert = require('node:assert');
const { register } = require('node:module');
const { pathToFileURL } = require('node:url');
const { MessageChannel } = require('node:worker_threads');
// This example showcases how a message channel can be used to communicate
// between the main (application) thread and the hooks running on the hooks
// thread, by sending `port2` to the `initialize` hook.
const { port1, port2 } = new MessageChannel();
port1.on('message', (msg) => {
assert.strictEqual(msg, 'increment: 2');
});
port1.unref();
register('./path-to-my-hooks.js', {
parentURL: pathToFileURL(__filename),
data: { number: 1, port: port2 },
transferList: [port2],
});
Asynchronous resolve(specifier, context, nextResolve)
specifier{string}context{Object}conditions{string[]} Export conditions of the relevantpackage.jsonimportAttributes{Object} An object whose key-value pairs represent the attributes for the module to importparentURL{string|undefined} The module importing this one, or undefined if this is the Node.js entry point
nextResolve{Function} The subsequentresolvehook in the chain, or the Node.js defaultresolvehook after the last user-suppliedresolvehookspecifier{string}context{Object|undefined} When omitted, the defaults are provided. When provided, defaults are merged in with preference to the provided properties.
- Returns: {Object|Promise} The asynchronous version takes either an object containing the
following properties, or a
Promisethat will resolve to such an object.format{string|null|undefined} A hint to theloadhook (it might be ignored). It can be a module format (such as'commonjs'or'module') or an arbitrary value like'css'or'yaml'.importAttributes{Object|undefined} The import attributes to use when caching the module (optional; if excluded the input will be used)shortCircuit{undefined|boolean} A signal that this hook intends to terminate the chain ofresolvehooks. Default:falseurl{string} The absolute URL to which this input resolves
The asynchronous version works similarly to the synchronous version, only that the
nextResolve function returns a Promise, and the resolve hook itself can return a Promise.
Warning
In the case of the asynchronous version, despite support for returning promises and async functions, calls to
resolvemay still block the main thread which can impact performance.
Warning
The
resolvehook invoked forrequire()calls inside CommonJS modules customized by asynchronous hooks does not receive the original specifier passed torequire(). Instead, it receives a URL already fully resolved using the default CommonJS resolution.
Warning
In the CommonJS modules that are customized by the asynchronous customization hooks,
require.resolve()andrequire()will use"import"export condition instead of"require", which may cause unexpected behaviors when loading dual packages.
export async function resolve(specifier, context, nextResolve) {
// When calling `defaultResolve`, the arguments can be modified. For example,
// to change the specifier or add conditions.
if (specifier.includes('foo')) {
specifier = specifier.replace('foo', 'bar');
return nextResolve(specifier, {
...context,
conditions: [...context.conditions, 'another-condition'],
});
}
// The hook can also skips default resolution and provide a custom URL.
if (specifier === 'special-module') {
return {
url: 'file:///path/to/special-module.mjs',
format: 'module',
shortCircuit: true, // This is mandatory if not calling nextResolve().
};
}
// If no customization is needed, defer to the next hook in the chain which would be the
// Node.js default resolve if this is the last user-specified loader.
return nextResolve(specifier);
}
Asynchronous load(url, context, nextLoad)
url{string} The URL returned by theresolvechaincontext{Object}conditions{string[]} Export conditions of the relevantpackage.jsonformat{string|null|undefined} The format optionally supplied by theresolvehook chain. This can be any string value as an input; input values do not need to conform to the list of acceptable return values described below.importAttributes{Object}
nextLoad{Function} The subsequentloadhook in the chain, or the Node.js defaultloadhook after the last user-suppliedloadhookurl{string}context{Object|undefined} When omitted, defaults are provided. When provided, defaults are merged in with preference to the provided properties. In the defaultnextLoad, if the module pointed to byurldoes not have explicit module type information,context.formatis mandatory.- Returns: {Promise} The asynchronous version takes either an object containing the
following properties, or a
Promisethat will resolve to such an object.
- Returns: {Promise} The asynchronous version takes either an object containing the
following properties, or a
format{string}shortCircuit{undefined|boolean} A signal that this hook intends to terminate the chain ofloadhooks. Default:falsesource{string|ArrayBuffer|TypedArray} The source for Node.js to evaluate
Warning
: The asynchronous
loadhook and namespaced exports from CommonJS modules are incompatible. Attempting to use them together will result in an empty object from the import. This may be addressed in the future. This does not apply to the synchronousloadhook, in which case exports can be used as usual.
The asynchronous version works similarly to the synchronous version, though
when using the asynchronous load hook, omitting vs providing a source for
'commonjs' has very different effects:
- When a
sourceis provided, allrequirecalls from this module will be processed by the ESM loader with registeredresolveandloadhooks; allrequire.resolvecalls from this module will be processed by the ESM loader with registeredresolvehooks; only a subset of the CommonJS API will be available (e.g. norequire.extensions, norequire.cache, norequire.resolve.paths) and monkey-patching on the CommonJS module loader will not apply. - If
sourceis undefined ornull, it will be handled by the CommonJS module loader andrequire/require.resolvecalls will not go through the registered hooks. This behavior for nullishsourceis temporary — in the future, nullishsourcewill not be supported.
These caveats do not apply to the synchronous load hook, in which case
the complete set of CommonJS APIs available to the customized CommonJS
modules, and require/require.resolve always go through the registered
hooks.
The Node.js internal asynchronous load implementation, which is the value of next for the
last hook in the load chain, returns null for source when format is
'commonjs' for backward compatibility. Here is an example hook that would
opt-in to using the non-default behavior:
import { readFile } from 'node:fs/promises';
// Asynchronous version accepted by module.register(). This fix is not needed
// for the synchronous version accepted by module.registerHooks().
export async function load(url, context, nextLoad) {
const result = await nextLoad(url, context);
if (result.format === 'commonjs') {
result.source ??= await readFile(new URL(result.responseURL ?? url));
}
return result;
}
This doesn't apply to the synchronous load hook either, in which case the
source returned contains source code loaded by the next hook, regardless
of module format.
Examples
The various module customization hooks can be used together to accomplish wide-ranging customizations of the Node.js code loading and evaluation behaviors.
Import from HTTPS
The hook below registers hooks to enable rudimentary support for such specifiers. While this may seem like a significant improvement to Node.js core functionality, there are substantial downsides to actually using these hooks: performance is much slower than loading files from disk, there is no caching, and there is no security.
// https-hooks.mjs
import { get } from 'node:https';
export function load(url, context, nextLoad) {
// For JavaScript to be loaded over the network, we need to fetch and
// return it.
if (url.startsWith('https://')) {
return new Promise((resolve, reject) => {
get(url, (res) => {
let data = '';
res.setEncoding('utf8');
res.on('data', (chunk) => data += chunk);
res.on('end', () => resolve({
// This example assumes all network-provided JavaScript is ES module
// code.
format: 'module',
shortCircuit: true,
source: data,
}));
}).on('error', (err) => reject(err));
});
}
// Let Node.js handle all other URLs.
return nextLoad(url);
}
// main.mjs
import { VERSION } from 'https://coffeescript.org/browser-compiler-modern/coffeescript.js';
console.log(VERSION);
With the preceding hooks module, running
node --import 'data:text/javascript,import { register } from "node:module"; import { pathToFileURL } from "node:url"; register(pathToFileURL("./https-hooks.mjs"));' ./main.mjs
prints the current version of CoffeeScript per the module at the URL in
main.mjs.
Transpilation
Sources that are in formats Node.js doesn't understand can be converted into
JavaScript using the load hook.
This is less performant than transpiling source files before running Node.js; transpiler hooks should only be used for development and testing purposes.
Asynchronous version
// coffeescript-hooks.mjs
import { readFile } from 'node:fs/promises';
import { findPackageJSON } from 'node:module';
import coffeescript from 'coffeescript';
const extensionsRegex = /\.(coffee|litcoffee|coffee\.md)$/;
export async function load(url, context, nextLoad) {
if (extensionsRegex.test(url)) {
// CoffeeScript files can be either CommonJS or ES modules. Use a custom format
// to tell Node.js not to detect its module type.
const { source: rawSource } = await nextLoad(url, { ...context, format: 'coffee' });
// This hook converts CoffeeScript source code into JavaScript source code
// for all imported CoffeeScript files.
const transformedSource = coffeescript.compile(rawSource.toString(), url);
// To determine how Node.js would interpret the transpilation result,
// search up the file system for the nearest parent package.json file
// and read its "type" field.
return {
format: await getPackageType(url),
shortCircuit: true,
source: transformedSource,
};
}
// Let Node.js handle all other URLs.
return nextLoad(url, context);
}
async function getPackageType(url) {
// `url` is only a file path during the first iteration when passed the
// resolved url from the load() hook
// an actual file path from load() will contain a file extension as it's
// required by the spec
// this simple truthy check for whether `url` contains a file extension will
// work for most projects but does not cover some edge-cases (such as
// extensionless files or a url ending in a trailing space)
const pJson = findPackageJSON(url);
return readFile(pJson, 'utf8')
.then(JSON.parse)
.then((json) => json?.type)
.catch(() => undefined);
}
Synchronous version
// coffeescript-sync-hooks.mjs
import { readFileSync } from 'node:fs';
import { registerHooks, findPackageJSON } from 'node:module';
import coffeescript from 'coffeescript';
const extensionsRegex = /\.(coffee|litcoffee|coffee\.md)$/;
function load(url, context, nextLoad) {
if (extensionsRegex.test(url)) {
const { source: rawSource } = nextLoad(url, { ...context, format: 'coffee' });
const transformedSource = coffeescript.compile(rawSource.toString(), url);
return {
format: getPackageType(url),
shortCircuit: true,
source: transformedSource,
};
}
return nextLoad(url, context);
}
function getPackageType(url) {
const pJson = findPackageJSON(url);
if (!pJson) {
return undefined;
}
try {
const file = readFileSync(pJson, 'utf-8');
return JSON.parse(file)?.type;
} catch {
return undefined;
}
}
registerHooks({ load });
Running hooks
# main.coffee
import { scream } from './scream.coffee'
console.log scream 'hello, world'
import { version } from 'node:process'
console.log "Brought to you by Node.js version #{version}"
# scream.coffee
export scream = (str) -> str.toUpperCase()
For the sake of running the example, add a package.json file containing the
module type of the CoffeeScript files.
{
"type": "module"
}
This is only for running the example. In real world loaders, getPackageType() must be
able to return an format known to Node.js even in the absence of an explicit type in a
package.json, or otherwise the nextLoad call would throw ERR_UNKNOWN_FILE_EXTENSION
(if undefined) or ERR_UNKNOWN_MODULE_FORMAT (if it's not a known format listed in
the load hook documentation).
With the preceding hooks modules, running
node --import 'data:text/javascript,import { register } from "node:module"; import { pathToFileURL } from "node:url"; register(pathToFileURL("./coffeescript-hooks.mjs"));' ./main.coffee
or node --import ./coffeescript-sync-hooks.mjs ./main.coffee
causes main.coffee to be turned into JavaScript after its source code is
loaded from disk but before Node.js executes it; and so on for any .coffee,
.litcoffee or .coffee.md files referenced via import statements of any
loaded file.
Import maps
The previous two examples defined load hooks. This is an example of a
resolve hook. This hooks module reads an import-map.json file that defines
which specifiers to override to other URLs (this is a very simplistic
implementation of a small subset of the "import maps" specification).
Asynchronous version
// import-map-hooks.js
import fs from 'node:fs/promises';
const { imports } = JSON.parse(await fs.readFile('import-map.json'));
export async function resolve(specifier, context, nextResolve) {
if (Object.hasOwn(imports, specifier)) {
return nextResolve(imports[specifier], context);
}
return nextResolve(specifier, context);
}
Synchronous version
// import-map-sync-hooks.js
import fs from 'node:fs/promises';
import module from 'node:module';
const { imports } = JSON.parse(fs.readFileSync('import-map.json', 'utf-8'));
function resolve(specifier, context, nextResolve) {
if (Object.hasOwn(imports, specifier)) {
return nextResolve(imports[specifier], context);
}
return nextResolve(specifier, context);
}
module.registerHooks({ resolve });
Using the hooks
With these files:
// main.js
import 'a-module';
// import-map.json
{
"imports": {
"a-module": "./some-module.js"
}
}
// some-module.js
console.log('some module!');
Running node --import 'data:text/javascript,import { register } from "node:module"; import { pathToFileURL } from "node:url"; register(pathToFileURL("./import-map-hooks.js"));' main.js
or node --import ./import-map-sync-hooks.js main.js
should print some module!.
Source Map Support
Stability: 1 - Experimental
Node.js supports TC39 ECMA-426 Source Map format (it was called Source map revision 3 format).
The APIs in this section are helpers for interacting with the source map cache. This cache is populated when source map parsing is enabled and source map include directives are found in a modules' footer.
To enable source map parsing, Node.js must be run with the flag
--enable-source-maps, or with code coverage enabled by setting
NODE_V8_COVERAGE=dir, or be enabled programmatically via
module.setSourceMapsSupport().
// module.mjs
// In an ECMAScript module
import { findSourceMap, SourceMap } from 'node:module';
// module.cjs
// In a CommonJS module
const { findSourceMap, SourceMap } = require('node:module');
module.getSourceMapsSupport()
- Returns: {Object}
enabled{boolean} If the source maps support is enablednodeModules{boolean} If the support is enabled for files innode_modules.generatedCode{boolean} If the support is enabled for generated code fromevalornew Function.
This method returns whether the Source Map v3 support for stack traces is enabled.
module.findSourceMap(path)
path{string}- Returns: {module.SourceMap|undefined} Returns
module.SourceMapif a source map is found,undefinedotherwise.
path is the resolved path for the file for which a corresponding source map
should be fetched.
module.setSourceMapsSupport(enabled[, options])
enabled{boolean} Enable the source map support.options{Object} OptionalnodeModules{boolean} If enabling the support for files innode_modules. Default:false.generatedCode{boolean} If enabling the support for generated code fromevalornew Function. Default:false.
This function enables or disables the Source Map v3 support for stack traces.
It provides same features as launching Node.js process with commandline options
--enable-source-maps, with additional options to alter the support for files
in node_modules or generated codes.
Only source maps in JavaScript files that are loaded after source maps has been
enabled will be parsed and loaded. Preferably, use the commandline options
--enable-source-maps to avoid losing track of source maps of modules loaded
before this API call.
Class: module.SourceMap
new SourceMap(payload[, { lineLengths }])
payload{Object}lineLengths{number[]}
Creates a new sourceMap instance.
payload is an object with keys matching the Source map format:
file{string}version{number}sources{string[]}sourcesContent{string[]}names{string[]}mappings{string}sourceRoot{string}
lineLengths is an optional array of the length of each line in the
generated code.
sourceMap.payload
- Returns: {Object}
Getter for the payload used to construct the SourceMap instance.
sourceMap.findEntry(lineOffset, columnOffset)
lineOffset{number} The zero-indexed line number offset in the generated sourcecolumnOffset{number} The zero-indexed column number offset in the generated source- Returns: {Object}
Given a line offset and column offset in the generated source file, returns an object representing the SourceMap range in the original file if found, or an empty object if not.
The object returned contains the following keys:
generatedLine{number} The line offset of the start of the range in the generated sourcegeneratedColumn{number} The column offset of start of the range in the generated sourceoriginalSource{string} The file name of the original source, as reported in the SourceMaporiginalLine{number} The line offset of the start of the range in the original sourceoriginalColumn{number} The column offset of start of the range in the original sourcename{string}
The returned value represents the raw range as it appears in the SourceMap, based on zero-indexed offsets, not 1-indexed line and column numbers as they appear in Error messages and CallSite objects.
To get the corresponding 1-indexed line and column numbers from a
lineNumber and columnNumber as they are reported by Error stacks
and CallSite objects, use sourceMap.findOrigin(lineNumber, columnNumber)
sourceMap.findOrigin(lineNumber, columnNumber)
lineNumber{number} The 1-indexed line number of the call site in the generated sourcecolumnNumber{number} The 1-indexed column number of the call site in the generated source- Returns: {Object}
Given a 1-indexed lineNumber and columnNumber from a call site in
the generated source, find the corresponding call site location
in the original source.
If the lineNumber and columnNumber provided are not found in any
source map, then an empty object is returned. Otherwise, the
returned object contains the following keys:
name{string|undefined} The name of the range in the source map, if one was providedfileName{string} The file name of the original source, as reported in the SourceMaplineNumber{number} The 1-indexed lineNumber of the corresponding call site in the original sourcecolumnNumber{number} The 1-indexed columnNumber of the corresponding call site in the original source