mirror of
https://github.com/lllyasviel/stable-diffusion-webui-forge.git
synced 2025-12-28 05:35:00 +00:00
1. fix several problems related to layerdiffuse not unloaded 2. fix several problems related to Fooocus inpaint 3. Slightly speed up on-the-fly LoRAs by precomputing them to computation dtype
176 lines
5.1 KiB
Python
176 lines
5.1 KiB
Python
import gguf
|
|
import torch
|
|
import os
|
|
import json
|
|
import safetensors.torch
|
|
import backend.misc.checkpoint_pickle
|
|
from backend.operations_gguf import ParameterGGUF
|
|
|
|
|
|
def read_arbitrary_config(directory):
|
|
config_path = os.path.join(directory, 'config.json')
|
|
|
|
if not os.path.exists(config_path):
|
|
raise FileNotFoundError(f"No config.json file found in the directory: {directory}")
|
|
|
|
with open(config_path, 'rt', encoding='utf-8') as file:
|
|
config_data = json.load(file)
|
|
|
|
return config_data
|
|
|
|
|
|
def load_torch_file(ckpt, safe_load=False, device=None):
|
|
if device is None:
|
|
device = torch.device("cpu")
|
|
if ckpt.lower().endswith(".safetensors"):
|
|
sd = safetensors.torch.load_file(ckpt, device=device.type)
|
|
elif ckpt.lower().endswith(".gguf"):
|
|
reader = gguf.GGUFReader(ckpt)
|
|
sd = {}
|
|
for tensor in reader.tensors:
|
|
sd[str(tensor.name)] = ParameterGGUF(tensor)
|
|
else:
|
|
if safe_load:
|
|
if not 'weights_only' in torch.load.__code__.co_varnames:
|
|
print("Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely.")
|
|
safe_load = False
|
|
if safe_load:
|
|
pl_sd = torch.load(ckpt, map_location=device, weights_only=True)
|
|
else:
|
|
pl_sd = torch.load(ckpt, map_location=device, pickle_module=backend.misc.checkpoint_pickle)
|
|
if "global_step" in pl_sd:
|
|
print(f"Global Step: {pl_sd['global_step']}")
|
|
if "state_dict" in pl_sd:
|
|
sd = pl_sd["state_dict"]
|
|
else:
|
|
sd = pl_sd
|
|
return sd
|
|
|
|
|
|
def set_attr(obj, attr, value):
|
|
attrs = attr.split(".")
|
|
for name in attrs[:-1]:
|
|
obj = getattr(obj, name)
|
|
setattr(obj, attrs[-1], torch.nn.Parameter(value, requires_grad=False))
|
|
|
|
|
|
def set_attr_raw(obj, attr, value):
|
|
attrs = attr.split(".")
|
|
for name in attrs[:-1]:
|
|
obj = getattr(obj, name)
|
|
setattr(obj, attrs[-1], value)
|
|
|
|
|
|
def copy_to_param(obj, attr, value):
|
|
attrs = attr.split(".")
|
|
for name in attrs[:-1]:
|
|
obj = getattr(obj, name)
|
|
prev = getattr(obj, attrs[-1])
|
|
prev.data.copy_(value)
|
|
|
|
|
|
def get_attr(obj, attr):
|
|
attrs = attr.split(".")
|
|
for name in attrs:
|
|
obj = getattr(obj, name)
|
|
return obj
|
|
|
|
|
|
def get_attr_with_parent(obj, attr):
|
|
attrs = attr.split(".")
|
|
parent = obj
|
|
name = None
|
|
for name in attrs:
|
|
parent = obj
|
|
obj = getattr(obj, name)
|
|
return parent, name, obj
|
|
|
|
|
|
def calculate_parameters(sd, prefix=""):
|
|
params = 0
|
|
for k in sd.keys():
|
|
if k.startswith(prefix):
|
|
params += sd[k].nelement()
|
|
return params
|
|
|
|
|
|
def tensor2parameter(x):
|
|
if isinstance(x, torch.nn.Parameter):
|
|
return x
|
|
else:
|
|
return torch.nn.Parameter(x, requires_grad=False)
|
|
|
|
|
|
def fp16_fix(x):
|
|
# An interesting trick to avoid fp16 overflow
|
|
# Source: https://github.com/lllyasviel/stable-diffusion-webui-forge/issues/1114
|
|
# Related: https://github.com/comfyanonymous/ComfyUI/blob/f1d6cef71c70719cc3ed45a2455a4e5ac910cd5e/comfy/ldm/flux/layers.py#L180
|
|
|
|
if x.dtype in [torch.float16]:
|
|
return x.clip(-32768.0, 32768.0)
|
|
return x
|
|
|
|
|
|
def dtype_to_element_size(dtype):
|
|
if isinstance(dtype, torch.dtype):
|
|
return torch.tensor([], dtype=dtype).element_size()
|
|
else:
|
|
raise ValueError(f"Invalid dtype: {dtype}")
|
|
|
|
|
|
def nested_compute_size(obj, element_size):
|
|
module_mem = 0
|
|
|
|
if isinstance(obj, dict):
|
|
for key in obj:
|
|
module_mem += nested_compute_size(obj[key], element_size)
|
|
elif isinstance(obj, list) or isinstance(obj, tuple):
|
|
for i in range(len(obj)):
|
|
module_mem += nested_compute_size(obj[i], element_size)
|
|
elif isinstance(obj, torch.Tensor):
|
|
module_mem += obj.nelement() * element_size
|
|
|
|
return module_mem
|
|
|
|
|
|
def nested_move_to_device(obj, **kwargs):
|
|
if isinstance(obj, dict):
|
|
for key in obj:
|
|
obj[key] = nested_move_to_device(obj[key], **kwargs)
|
|
elif isinstance(obj, list):
|
|
for i in range(len(obj)):
|
|
obj[i] = nested_move_to_device(obj[i], **kwargs)
|
|
elif isinstance(obj, tuple):
|
|
obj = tuple(nested_move_to_device(i, **kwargs) for i in obj)
|
|
elif isinstance(obj, torch.Tensor):
|
|
return obj.to(**kwargs)
|
|
return obj
|
|
|
|
|
|
def get_state_dict_after_quant(model, prefix=''):
|
|
for m in model.modules():
|
|
if hasattr(m, 'weight') and hasattr(m.weight, 'bnb_quantized'):
|
|
if not m.weight.bnb_quantized:
|
|
original_device = m.weight.device
|
|
m.cuda()
|
|
m.to(original_device)
|
|
|
|
sd = model.state_dict()
|
|
sd = {(prefix + k): v.clone() for k, v in sd.items()}
|
|
return sd
|
|
|
|
|
|
def beautiful_print_gguf_state_dict_statics(state_dict):
|
|
from gguf.constants import GGMLQuantizationType
|
|
type_counts = {}
|
|
for k, v in state_dict.items():
|
|
gguf_cls = getattr(v, 'gguf_cls', None)
|
|
if gguf_cls is not None:
|
|
type_name = gguf_cls.__name__
|
|
if type_name in type_counts:
|
|
type_counts[type_name] += 1
|
|
else:
|
|
type_counts[type_name] = 1
|
|
print(f'GGUF state dict: {type_counts}')
|
|
return
|