mirror of
https://github.com/lllyasviel/stable-diffusion-webui-forge.git
synced 2025-12-28 05:35:00 +00:00
72 lines
2.7 KiB
Python
72 lines
2.7 KiB
Python
# import open_clip.tokenizer
|
|
# import torch
|
|
#
|
|
# from modules import sd_hijack_clip, devices
|
|
# from modules.shared import opts
|
|
#
|
|
# tokenizer = open_clip.tokenizer._tokenizer
|
|
#
|
|
#
|
|
# class FrozenOpenCLIPEmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase):
|
|
# def __init__(self, wrapped, hijack):
|
|
# super().__init__(wrapped, hijack)
|
|
#
|
|
# self.comma_token = [v for k, v in tokenizer.encoder.items() if k == ',</w>'][0]
|
|
# self.id_start = tokenizer.encoder["<start_of_text>"]
|
|
# self.id_end = tokenizer.encoder["<end_of_text>"]
|
|
# self.id_pad = 0
|
|
#
|
|
# def tokenize(self, texts):
|
|
# assert not opts.use_old_emphasis_implementation, 'Old emphasis implementation not supported for Open Clip'
|
|
#
|
|
# tokenized = [tokenizer.encode(text) for text in texts]
|
|
#
|
|
# return tokenized
|
|
#
|
|
# def encode_with_transformers(self, tokens):
|
|
# # set self.wrapped.layer_idx here according to opts.CLIP_stop_at_last_layers
|
|
# z = self.wrapped.encode_with_transformer(tokens)
|
|
#
|
|
# return z
|
|
#
|
|
# def encode_embedding_init_text(self, init_text, nvpt):
|
|
# ids = tokenizer.encode(init_text)
|
|
# ids = torch.asarray([ids], device=devices.device, dtype=torch.int)
|
|
# embedded = self.wrapped.model.token_embedding.wrapped(ids).squeeze(0)
|
|
#
|
|
# return embedded
|
|
#
|
|
#
|
|
# class FrozenOpenCLIPEmbedder2WithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase):
|
|
# def __init__(self, wrapped, hijack):
|
|
# super().__init__(wrapped, hijack)
|
|
#
|
|
# self.comma_token = [v for k, v in tokenizer.encoder.items() if k == ',</w>'][0]
|
|
# self.id_start = tokenizer.encoder["<start_of_text>"]
|
|
# self.id_end = tokenizer.encoder["<end_of_text>"]
|
|
# self.id_pad = 0
|
|
#
|
|
# def tokenize(self, texts):
|
|
# assert not opts.use_old_emphasis_implementation, 'Old emphasis implementation not supported for Open Clip'
|
|
#
|
|
# tokenized = [tokenizer.encode(text) for text in texts]
|
|
#
|
|
# return tokenized
|
|
#
|
|
# def encode_with_transformers(self, tokens):
|
|
# d = self.wrapped.encode_with_transformer(tokens)
|
|
# z = d[self.wrapped.layer]
|
|
#
|
|
# pooled = d.get("pooled")
|
|
# if pooled is not None:
|
|
# z.pooled = pooled
|
|
#
|
|
# return z
|
|
#
|
|
# def encode_embedding_init_text(self, init_text, nvpt):
|
|
# ids = tokenizer.encode(init_text)
|
|
# ids = torch.asarray([ids], device=devices.device, dtype=torch.int)
|
|
# embedded = self.wrapped.model.token_embedding.wrapped(ids.to(self.wrapped.model.token_embedding.wrapped.weight.device)).squeeze(0)
|
|
#
|
|
# return embedded
|