mirror of
https://github.com/lllyasviel/stable-diffusion-webui-forge.git
synced 2025-12-28 05:35:00 +00:00
233 lines
12 KiB
Python
233 lines
12 KiB
Python
# import ldm.modules.encoders.modules
|
|
# import open_clip
|
|
# import torch
|
|
# import transformers.utils.hub
|
|
#
|
|
# from modules import shared
|
|
#
|
|
#
|
|
# class ReplaceHelper:
|
|
# def __init__(self):
|
|
# self.replaced = []
|
|
#
|
|
# def replace(self, obj, field, func):
|
|
# original = getattr(obj, field, None)
|
|
# if original is None:
|
|
# return None
|
|
#
|
|
# self.replaced.append((obj, field, original))
|
|
# setattr(obj, field, func)
|
|
#
|
|
# return original
|
|
#
|
|
# def restore(self):
|
|
# for obj, field, original in self.replaced:
|
|
# setattr(obj, field, original)
|
|
#
|
|
# self.replaced.clear()
|
|
#
|
|
#
|
|
# class DisableInitialization(ReplaceHelper):
|
|
# """
|
|
# When an object of this class enters a `with` block, it starts:
|
|
# - preventing torch's layer initialization functions from working
|
|
# - changes CLIP and OpenCLIP to not download model weights
|
|
# - changes CLIP to not make requests to check if there is a new version of a file you already have
|
|
#
|
|
# When it leaves the block, it reverts everything to how it was before.
|
|
#
|
|
# Use it like this:
|
|
# ```
|
|
# with DisableInitialization():
|
|
# do_things()
|
|
# ```
|
|
# """
|
|
#
|
|
# def __init__(self, disable_clip=True):
|
|
# super().__init__()
|
|
# self.disable_clip = disable_clip
|
|
#
|
|
# def replace(self, obj, field, func):
|
|
# original = getattr(obj, field, None)
|
|
# if original is None:
|
|
# return None
|
|
#
|
|
# self.replaced.append((obj, field, original))
|
|
# setattr(obj, field, func)
|
|
#
|
|
# return original
|
|
#
|
|
# def __enter__(self):
|
|
# def do_nothing(*args, **kwargs):
|
|
# pass
|
|
#
|
|
# def create_model_and_transforms_without_pretrained(*args, pretrained=None, **kwargs):
|
|
# return self.create_model_and_transforms(*args, pretrained=None, **kwargs)
|
|
#
|
|
# def CLIPTextModel_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs):
|
|
# res = self.CLIPTextModel_from_pretrained(None, *model_args, config=pretrained_model_name_or_path, state_dict={}, **kwargs)
|
|
# res.name_or_path = pretrained_model_name_or_path
|
|
# return res
|
|
#
|
|
# def transformers_modeling_utils_load_pretrained_model(*args, **kwargs):
|
|
# args = args[0:3] + ('/', ) + args[4:] # resolved_archive_file; must set it to something to prevent what seems to be a bug
|
|
# return self.transformers_modeling_utils_load_pretrained_model(*args, **kwargs)
|
|
#
|
|
# def transformers_utils_hub_get_file_from_cache(original, url, *args, **kwargs):
|
|
#
|
|
# # this file is always 404, prevent making request
|
|
# if url == 'https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/added_tokens.json' or url == 'openai/clip-vit-large-patch14' and args[0] == 'added_tokens.json':
|
|
# return None
|
|
#
|
|
# try:
|
|
# res = original(url, *args, local_files_only=True, **kwargs)
|
|
# if res is None:
|
|
# res = original(url, *args, local_files_only=False, **kwargs)
|
|
# return res
|
|
# except Exception:
|
|
# return original(url, *args, local_files_only=False, **kwargs)
|
|
#
|
|
# def transformers_utils_hub_get_from_cache(url, *args, local_files_only=False, **kwargs):
|
|
# return transformers_utils_hub_get_file_from_cache(self.transformers_utils_hub_get_from_cache, url, *args, **kwargs)
|
|
#
|
|
# def transformers_tokenization_utils_base_cached_file(url, *args, local_files_only=False, **kwargs):
|
|
# return transformers_utils_hub_get_file_from_cache(self.transformers_tokenization_utils_base_cached_file, url, *args, **kwargs)
|
|
#
|
|
# def transformers_configuration_utils_cached_file(url, *args, local_files_only=False, **kwargs):
|
|
# return transformers_utils_hub_get_file_from_cache(self.transformers_configuration_utils_cached_file, url, *args, **kwargs)
|
|
#
|
|
# self.replace(torch.nn.init, 'kaiming_uniform_', do_nothing)
|
|
# self.replace(torch.nn.init, '_no_grad_normal_', do_nothing)
|
|
# self.replace(torch.nn.init, '_no_grad_uniform_', do_nothing)
|
|
#
|
|
# if self.disable_clip:
|
|
# self.create_model_and_transforms = self.replace(open_clip, 'create_model_and_transforms', create_model_and_transforms_without_pretrained)
|
|
# self.CLIPTextModel_from_pretrained = self.replace(ldm.modules.encoders.modules.CLIPTextModel, 'from_pretrained', CLIPTextModel_from_pretrained)
|
|
# self.transformers_modeling_utils_load_pretrained_model = self.replace(transformers.modeling_utils.PreTrainedModel, '_load_pretrained_model', transformers_modeling_utils_load_pretrained_model)
|
|
# self.transformers_tokenization_utils_base_cached_file = self.replace(transformers.tokenization_utils_base, 'cached_file', transformers_tokenization_utils_base_cached_file)
|
|
# self.transformers_configuration_utils_cached_file = self.replace(transformers.configuration_utils, 'cached_file', transformers_configuration_utils_cached_file)
|
|
# self.transformers_utils_hub_get_from_cache = self.replace(transformers.utils.hub, 'get_from_cache', transformers_utils_hub_get_from_cache)
|
|
#
|
|
# def __exit__(self, exc_type, exc_val, exc_tb):
|
|
# self.restore()
|
|
#
|
|
#
|
|
# class InitializeOnMeta(ReplaceHelper):
|
|
# """
|
|
# Context manager that causes all parameters for linear/conv2d/mha layers to be allocated on meta device,
|
|
# which results in those parameters having no values and taking no memory. model.to() will be broken and
|
|
# will need to be repaired by using LoadStateDictOnMeta below when loading params from state dict.
|
|
#
|
|
# Usage:
|
|
# ```
|
|
# with sd_disable_initialization.InitializeOnMeta():
|
|
# sd_model = instantiate_from_config(sd_config.model)
|
|
# ```
|
|
# """
|
|
#
|
|
# def __enter__(self):
|
|
# if shared.cmd_opts.disable_model_loading_ram_optimization:
|
|
# return
|
|
#
|
|
# def set_device(x):
|
|
# x["device"] = "meta"
|
|
# return x
|
|
#
|
|
# linear_init = self.replace(torch.nn.Linear, '__init__', lambda *args, **kwargs: linear_init(*args, **set_device(kwargs)))
|
|
# conv2d_init = self.replace(torch.nn.Conv2d, '__init__', lambda *args, **kwargs: conv2d_init(*args, **set_device(kwargs)))
|
|
# mha_init = self.replace(torch.nn.MultiheadAttention, '__init__', lambda *args, **kwargs: mha_init(*args, **set_device(kwargs)))
|
|
# self.replace(torch.nn.Module, 'to', lambda *args, **kwargs: None)
|
|
#
|
|
# def __exit__(self, exc_type, exc_val, exc_tb):
|
|
# self.restore()
|
|
#
|
|
#
|
|
# class LoadStateDictOnMeta(ReplaceHelper):
|
|
# """
|
|
# Context manager that allows to read parameters from state_dict into a model that has some of its parameters in the meta device.
|
|
# As those parameters are read from state_dict, they will be deleted from it, so by the end state_dict will be mostly empty, to save memory.
|
|
# Meant to be used together with InitializeOnMeta above.
|
|
#
|
|
# Usage:
|
|
# ```
|
|
# with sd_disable_initialization.LoadStateDictOnMeta(state_dict):
|
|
# model.load_state_dict(state_dict, strict=False)
|
|
# ```
|
|
# """
|
|
#
|
|
# def __init__(self, state_dict, device, weight_dtype_conversion=None):
|
|
# super().__init__()
|
|
# self.state_dict = state_dict
|
|
# self.device = device
|
|
# self.weight_dtype_conversion = weight_dtype_conversion or {}
|
|
# self.default_dtype = self.weight_dtype_conversion.get('')
|
|
#
|
|
# def get_weight_dtype(self, key):
|
|
# key_first_term, _ = key.split('.', 1)
|
|
# return self.weight_dtype_conversion.get(key_first_term, self.default_dtype)
|
|
#
|
|
# def __enter__(self):
|
|
# if shared.cmd_opts.disable_model_loading_ram_optimization:
|
|
# return
|
|
#
|
|
# sd = self.state_dict
|
|
# device = self.device
|
|
#
|
|
# def load_from_state_dict(original, module, state_dict, prefix, *args, **kwargs):
|
|
# used_param_keys = []
|
|
#
|
|
# for name, param in module._parameters.items():
|
|
# if param is None:
|
|
# continue
|
|
#
|
|
# key = prefix + name
|
|
# sd_param = sd.pop(key, None)
|
|
# if sd_param is not None:
|
|
# state_dict[key] = sd_param.to(dtype=self.get_weight_dtype(key))
|
|
# used_param_keys.append(key)
|
|
#
|
|
# if param.is_meta:
|
|
# dtype = sd_param.dtype if sd_param is not None else param.dtype
|
|
# module._parameters[name] = torch.nn.parameter.Parameter(torch.zeros_like(param, device=device, dtype=dtype), requires_grad=param.requires_grad)
|
|
#
|
|
# for name in module._buffers:
|
|
# key = prefix + name
|
|
#
|
|
# sd_param = sd.pop(key, None)
|
|
# if sd_param is not None:
|
|
# state_dict[key] = sd_param
|
|
# used_param_keys.append(key)
|
|
#
|
|
# original(module, state_dict, prefix, *args, **kwargs)
|
|
#
|
|
# for key in used_param_keys:
|
|
# state_dict.pop(key, None)
|
|
#
|
|
# def load_state_dict(original, module, state_dict, strict=True):
|
|
# """torch makes a lot of copies of the dictionary with weights, so just deleting entries from state_dict does not help
|
|
# because the same values are stored in multiple copies of the dict. The trick used here is to give torch a dict with
|
|
# all weights on meta device, i.e. deleted, and then it doesn't matter how many copies torch makes.
|
|
#
|
|
# In _load_from_state_dict, the correct weight will be obtained from a single dict with the right weights (sd).
|
|
#
|
|
# The dangerous thing about this is if _load_from_state_dict is not called, (if some exotic module overloads
|
|
# the function and does not call the original) the state dict will just fail to load because weights
|
|
# would be on the meta device.
|
|
# """
|
|
#
|
|
# if state_dict is sd:
|
|
# state_dict = {k: v.to(device="meta", dtype=v.dtype) for k, v in state_dict.items()}
|
|
#
|
|
# original(module, state_dict, strict=strict)
|
|
#
|
|
# module_load_state_dict = self.replace(torch.nn.Module, 'load_state_dict', lambda *args, **kwargs: load_state_dict(module_load_state_dict, *args, **kwargs))
|
|
# module_load_from_state_dict = self.replace(torch.nn.Module, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(module_load_from_state_dict, *args, **kwargs))
|
|
# linear_load_from_state_dict = self.replace(torch.nn.Linear, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(linear_load_from_state_dict, *args, **kwargs))
|
|
# conv2d_load_from_state_dict = self.replace(torch.nn.Conv2d, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(conv2d_load_from_state_dict, *args, **kwargs))
|
|
# mha_load_from_state_dict = self.replace(torch.nn.MultiheadAttention, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(mha_load_from_state_dict, *args, **kwargs))
|
|
# layer_norm_load_from_state_dict = self.replace(torch.nn.LayerNorm, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(layer_norm_load_from_state_dict, *args, **kwargs))
|
|
# group_norm_load_from_state_dict = self.replace(torch.nn.GroupNorm, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(group_norm_load_from_state_dict, *args, **kwargs))
|
|
#
|
|
# def __exit__(self, exc_type, exc_val, exc_tb):
|
|
# self.restore()
|