mirror of
https://github.com/lllyasviel/stable-diffusion-webui-forge.git
synced 2025-12-28 13:42:02 +00:00
Update sub_quadratic_attention.py
This commit is contained in:
parent
4add428e25
commit
c7b1789892
@ -16,55 +16,60 @@ from torch.utils.checkpoint import checkpoint
|
||||
import math
|
||||
|
||||
try:
|
||||
from typing import Optional, NamedTuple, List, Protocol
|
||||
from typing import Optional, NamedTuple, List, Protocol
|
||||
except ImportError:
|
||||
from typing import Optional, NamedTuple, List
|
||||
from typing_extensions import Protocol
|
||||
from typing import Optional, NamedTuple, List
|
||||
from typing_extensions import Protocol
|
||||
|
||||
from torch import Tensor
|
||||
from typing import List
|
||||
|
||||
from ldm_patched.modules import model_management
|
||||
from backend import memory_management
|
||||
|
||||
|
||||
def dynamic_slice(
|
||||
x: Tensor,
|
||||
starts: List[int],
|
||||
sizes: List[int],
|
||||
x: Tensor,
|
||||
starts: List[int],
|
||||
sizes: List[int],
|
||||
) -> Tensor:
|
||||
slicing = [slice(start, start + size) for start, size in zip(starts, sizes)]
|
||||
return x[slicing]
|
||||
|
||||
|
||||
class AttnChunk(NamedTuple):
|
||||
exp_values: Tensor
|
||||
exp_weights_sum: Tensor
|
||||
max_score: Tensor
|
||||
|
||||
|
||||
class SummarizeChunk(Protocol):
|
||||
@staticmethod
|
||||
def __call__(
|
||||
query: Tensor,
|
||||
key_t: Tensor,
|
||||
value: Tensor,
|
||||
query: Tensor,
|
||||
key_t: Tensor,
|
||||
value: Tensor,
|
||||
) -> AttnChunk: ...
|
||||
|
||||
|
||||
class ComputeQueryChunkAttn(Protocol):
|
||||
@staticmethod
|
||||
def __call__(
|
||||
query: Tensor,
|
||||
key_t: Tensor,
|
||||
value: Tensor,
|
||||
) -> Tensor: ...
|
||||
|
||||
|
||||
def _summarize_chunk(
|
||||
query: Tensor,
|
||||
key_t: Tensor,
|
||||
value: Tensor,
|
||||
) -> Tensor: ...
|
||||
|
||||
def _summarize_chunk(
|
||||
query: Tensor,
|
||||
key_t: Tensor,
|
||||
value: Tensor,
|
||||
scale: float,
|
||||
upcast_attention: bool,
|
||||
mask,
|
||||
scale: float,
|
||||
upcast_attention: bool,
|
||||
mask,
|
||||
) -> AttnChunk:
|
||||
if upcast_attention:
|
||||
with torch.autocast(enabled=False, device_type = 'cuda'):
|
||||
with torch.autocast(enabled=False, device_type='cuda'):
|
||||
query = query.float()
|
||||
key_t = key_t.float()
|
||||
attn_weights = torch.baddbmm(
|
||||
@ -93,13 +98,14 @@ def _summarize_chunk(
|
||||
max_score = max_score.squeeze(-1)
|
||||
return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score)
|
||||
|
||||
|
||||
def _query_chunk_attention(
|
||||
query: Tensor,
|
||||
key_t: Tensor,
|
||||
value: Tensor,
|
||||
summarize_chunk: SummarizeChunk,
|
||||
kv_chunk_size: int,
|
||||
mask,
|
||||
query: Tensor,
|
||||
key_t: Tensor,
|
||||
value: Tensor,
|
||||
summarize_chunk: SummarizeChunk,
|
||||
kv_chunk_size: int,
|
||||
mask,
|
||||
) -> Tensor:
|
||||
batch_x_heads, k_channels_per_head, k_tokens = key_t.shape
|
||||
_, _, v_channels_per_head = value.shape
|
||||
@ -116,7 +122,7 @@ def _query_chunk_attention(
|
||||
(batch_x_heads, kv_chunk_size, v_channels_per_head)
|
||||
)
|
||||
if mask is not None:
|
||||
mask = mask[:,:,chunk_idx:chunk_idx + kv_chunk_size]
|
||||
mask = mask[:, :, chunk_idx:chunk_idx + kv_chunk_size]
|
||||
|
||||
return summarize_chunk(query, key_chunk, value_chunk, mask=mask)
|
||||
|
||||
@ -135,17 +141,18 @@ def _query_chunk_attention(
|
||||
all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0)
|
||||
return all_values / all_weights
|
||||
|
||||
|
||||
# TODO: refactor CrossAttention#get_attention_scores to share code with this
|
||||
def _get_attention_scores_no_kv_chunking(
|
||||
query: Tensor,
|
||||
key_t: Tensor,
|
||||
value: Tensor,
|
||||
scale: float,
|
||||
upcast_attention: bool,
|
||||
mask,
|
||||
query: Tensor,
|
||||
key_t: Tensor,
|
||||
value: Tensor,
|
||||
scale: float,
|
||||
upcast_attention: bool,
|
||||
mask,
|
||||
) -> Tensor:
|
||||
if upcast_attention:
|
||||
with torch.autocast(enabled=False, device_type = 'cuda'):
|
||||
with torch.autocast(enabled=False, device_type='cuda'):
|
||||
query = query.float()
|
||||
key_t = key_t.float()
|
||||
attn_scores = torch.baddbmm(
|
||||
@ -169,7 +176,7 @@ def _get_attention_scores_no_kv_chunking(
|
||||
try:
|
||||
attn_probs = attn_scores.softmax(dim=-1)
|
||||
del attn_scores
|
||||
except model_management.OOM_EXCEPTION:
|
||||
except memory_management.OOM_EXCEPTION:
|
||||
print("ran out of memory while running softmax in _get_attention_scores_no_kv_chunking, trying slower in place softmax instead")
|
||||
attn_scores -= attn_scores.max(dim=-1, keepdim=True).values
|
||||
torch.exp(attn_scores, out=attn_scores)
|
||||
@ -180,20 +187,22 @@ def _get_attention_scores_no_kv_chunking(
|
||||
hidden_states_slice = torch.bmm(attn_probs.to(value.dtype), value)
|
||||
return hidden_states_slice
|
||||
|
||||
|
||||
class ScannedChunk(NamedTuple):
|
||||
chunk_idx: int
|
||||
attn_chunk: AttnChunk
|
||||
|
||||
|
||||
def efficient_dot_product_attention(
|
||||
query: Tensor,
|
||||
key_t: Tensor,
|
||||
value: Tensor,
|
||||
query_chunk_size=1024,
|
||||
kv_chunk_size: Optional[int] = None,
|
||||
kv_chunk_size_min: Optional[int] = None,
|
||||
use_checkpoint=True,
|
||||
upcast_attention=False,
|
||||
mask = None,
|
||||
query: Tensor,
|
||||
key_t: Tensor,
|
||||
value: Tensor,
|
||||
query_chunk_size=1024,
|
||||
kv_chunk_size: Optional[int] = None,
|
||||
kv_chunk_size_min: Optional[int] = None,
|
||||
use_checkpoint=True,
|
||||
upcast_attention=False,
|
||||
mask=None,
|
||||
):
|
||||
"""Computes efficient dot-product attention given query, transposed key, and value.
|
||||
This is efficient version of attention presented in
|
||||
@ -234,7 +243,7 @@ def efficient_dot_product_attention(
|
||||
if mask is None:
|
||||
return None
|
||||
chunk = min(query_chunk_size, q_tokens)
|
||||
return mask[:,chunk_idx:chunk_idx + chunk]
|
||||
return mask[:, chunk_idx:chunk_idx + chunk]
|
||||
|
||||
summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale, upcast_attention=upcast_attention)
|
||||
summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk
|
||||
@ -259,7 +268,7 @@ def efficient_dot_product_attention(
|
||||
value=value,
|
||||
mask=mask,
|
||||
)
|
||||
|
||||
|
||||
# TODO: maybe we should use torch.empty_like(query) to allocate storage in-advance,
|
||||
# and pass slices to be mutated, instead of torch.cat()ing the returned slices
|
||||
res = torch.cat([
|
||||
|
||||
Loading…
Reference in New Issue
Block a user