From 692a0b24224b389d9fbd6c1130c1b33a88d28376 Mon Sep 17 00:00:00 2001 From: layerdiffusion <19834515+lllyasviel@users.noreply.github.com> Date: Wed, 7 Aug 2024 19:01:19 -0700 Subject: [PATCH] remove confusing codes that actually do nothing --- modules/sd_samplers_kdiffusion.py | 4 ---- modules/sd_samplers_timesteps.py | 13 ------------- 2 files changed, 17 deletions(-) diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 5d304a28..dedd6a4a 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -133,8 +133,6 @@ class KDiffusionSampler(sd_samplers_common.Sampler): unet_patcher = self.model_wrap.inner_model.forge_objects.unet sampling_prepare(self.model_wrap.inner_model.forge_objects.unet, x=x) - self.model_wrap.predictor.to(x.device) - steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps) sigmas = self.get_sigmas(p, steps).to(x.device) @@ -194,8 +192,6 @@ class KDiffusionSampler(sd_samplers_common.Sampler): unet_patcher = self.model_wrap.inner_model.forge_objects.unet sampling_prepare(self.model_wrap.inner_model.forge_objects.unet, x=x) - self.model_wrap.predictor.to(x.device) - steps = steps or p.steps sigmas = self.get_sigmas(p, steps).to(x.device) diff --git a/modules/sd_samplers_timesteps.py b/modules/sd_samplers_timesteps.py index 3e410f4d..514e1d63 100644 --- a/modules/sd_samplers_timesteps.py +++ b/modules/sd_samplers_timesteps.py @@ -38,21 +38,8 @@ class CFGDenoiserTimesteps(CFGDenoiser): def __init__(self, sampler): super().__init__(sampler) - - self.alphas = 1.0 / (shared.sd_model.forge_objects.unet.model.predictor.sigmas ** 2.0 + 1.0) self.classic_ddim_eps_estimation = True - def get_pred_x0(self, x_in, x_out, sigma): - ts = sigma.to(dtype=int) - self.alphas = self.alphas.to(ts.device) - - a_t = self.alphas[ts][:, None, None, None] - sqrt_one_minus_at = (1 - a_t).sqrt() - - pred_x0 = (x_in - sqrt_one_minus_at * x_out) / a_t.sqrt() - - return pred_x0 - @property def inner_model(self): if self.model_wrap is None: