mirror of
https://github.com/lllyasviel/stable-diffusion-webui-forge.git
synced 2025-12-28 05:35:00 +00:00
link k-diffusion to backend
This commit is contained in:
parent
69b1827ed5
commit
5591b701c1
@ -38,6 +38,41 @@ class VDenoiser(nn.Module):
|
||||
return self.inner_model(input * c_in, self.sigma_to_t(sigma), **kwargs) * c_out + input * c_skip
|
||||
|
||||
|
||||
class ForgeScheduleLinker(nn.Module):
|
||||
def __init__(self, predictor):
|
||||
super().__init__()
|
||||
self.predictor = predictor
|
||||
|
||||
@property
|
||||
def sigmas(self):
|
||||
return self.predictor.sigmas
|
||||
|
||||
@property
|
||||
def log_sigmas(self):
|
||||
return self.predictor.sigmas.log()
|
||||
|
||||
@property
|
||||
def sigma_min(self):
|
||||
return self.predictor.sigma_min()
|
||||
|
||||
@property
|
||||
def sigma_max(self):
|
||||
return self.predictor.sigma_max()
|
||||
|
||||
def get_sigmas(self, n=None):
|
||||
if n is None:
|
||||
return sampling.append_zero(self.sigmas.flip(0))
|
||||
t_max = len(self.sigmas) - 1
|
||||
t = torch.linspace(t_max, 0, n, device=self.sigmas.device)
|
||||
return sampling.append_zero(self.t_to_sigma(t))
|
||||
|
||||
def sigma_to_t(self, sigma, quantize=None):
|
||||
return self.predictor.timestep(sigma)
|
||||
|
||||
def t_to_sigma(self, t):
|
||||
return self.predictor.sigma(t)
|
||||
|
||||
|
||||
class DiscreteSchedule(nn.Module):
|
||||
"""A mapping between continuous noise levels (sigmas) and a list of discrete noise
|
||||
levels."""
|
||||
|
||||
@ -56,10 +56,7 @@ class CFGDenoiserKDiffusion(sd_samplers_cfg_denoiser.CFGDenoiser):
|
||||
@property
|
||||
def inner_model(self):
|
||||
if self.model_wrap is None:
|
||||
self.model_wrap = k_diffusion.external.DiscreteSchedule(
|
||||
sigmas=shared.sd_model.forge_objects.unet.model.predictor.sigmas,
|
||||
quantize=shared.opts.enable_quantization
|
||||
)
|
||||
self.model_wrap = k_diffusion.external.ForgeScheduleLinker(shared.sd_model.forge_objects.unet.model.predictor)
|
||||
self.model_wrap.inner_model = shared.sd_model
|
||||
|
||||
return self.model_wrap
|
||||
@ -136,8 +133,7 @@ class KDiffusionSampler(sd_samplers_common.Sampler):
|
||||
unet_patcher = self.model_wrap.inner_model.forge_objects.unet
|
||||
sampling_prepare(self.model_wrap.inner_model.forge_objects.unet, x=x)
|
||||
|
||||
self.model_wrap.log_sigmas = self.model_wrap.log_sigmas.to(x.device)
|
||||
self.model_wrap.sigmas = self.model_wrap.sigmas.to(x.device)
|
||||
self.model_wrap.predictor.to(x.device)
|
||||
|
||||
steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
|
||||
|
||||
@ -198,8 +194,7 @@ class KDiffusionSampler(sd_samplers_common.Sampler):
|
||||
unet_patcher = self.model_wrap.inner_model.forge_objects.unet
|
||||
sampling_prepare(self.model_wrap.inner_model.forge_objects.unet, x=x)
|
||||
|
||||
self.model_wrap.log_sigmas = self.model_wrap.log_sigmas.to(x.device)
|
||||
self.model_wrap.sigmas = self.model_wrap.sigmas.to(x.device)
|
||||
self.model_wrap.predictor.to(x.device)
|
||||
|
||||
steps = steps or p.steps
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user