link k-diffusion to backend

This commit is contained in:
layerdiffusion 2024-08-07 18:44:53 -07:00
parent 69b1827ed5
commit 5591b701c1
2 changed files with 38 additions and 8 deletions

View File

@ -38,6 +38,41 @@ class VDenoiser(nn.Module):
return self.inner_model(input * c_in, self.sigma_to_t(sigma), **kwargs) * c_out + input * c_skip
class ForgeScheduleLinker(nn.Module):
def __init__(self, predictor):
super().__init__()
self.predictor = predictor
@property
def sigmas(self):
return self.predictor.sigmas
@property
def log_sigmas(self):
return self.predictor.sigmas.log()
@property
def sigma_min(self):
return self.predictor.sigma_min()
@property
def sigma_max(self):
return self.predictor.sigma_max()
def get_sigmas(self, n=None):
if n is None:
return sampling.append_zero(self.sigmas.flip(0))
t_max = len(self.sigmas) - 1
t = torch.linspace(t_max, 0, n, device=self.sigmas.device)
return sampling.append_zero(self.t_to_sigma(t))
def sigma_to_t(self, sigma, quantize=None):
return self.predictor.timestep(sigma)
def t_to_sigma(self, t):
return self.predictor.sigma(t)
class DiscreteSchedule(nn.Module):
"""A mapping between continuous noise levels (sigmas) and a list of discrete noise
levels."""

View File

@ -56,10 +56,7 @@ class CFGDenoiserKDiffusion(sd_samplers_cfg_denoiser.CFGDenoiser):
@property
def inner_model(self):
if self.model_wrap is None:
self.model_wrap = k_diffusion.external.DiscreteSchedule(
sigmas=shared.sd_model.forge_objects.unet.model.predictor.sigmas,
quantize=shared.opts.enable_quantization
)
self.model_wrap = k_diffusion.external.ForgeScheduleLinker(shared.sd_model.forge_objects.unet.model.predictor)
self.model_wrap.inner_model = shared.sd_model
return self.model_wrap
@ -136,8 +133,7 @@ class KDiffusionSampler(sd_samplers_common.Sampler):
unet_patcher = self.model_wrap.inner_model.forge_objects.unet
sampling_prepare(self.model_wrap.inner_model.forge_objects.unet, x=x)
self.model_wrap.log_sigmas = self.model_wrap.log_sigmas.to(x.device)
self.model_wrap.sigmas = self.model_wrap.sigmas.to(x.device)
self.model_wrap.predictor.to(x.device)
steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
@ -198,8 +194,7 @@ class KDiffusionSampler(sd_samplers_common.Sampler):
unet_patcher = self.model_wrap.inner_model.forge_objects.unet
sampling_prepare(self.model_wrap.inner_model.forge_objects.unet, x=x)
self.model_wrap.log_sigmas = self.model_wrap.log_sigmas.to(x.device)
self.model_wrap.sigmas = self.model_wrap.sigmas.to(x.device)
self.model_wrap.predictor.to(x.device)
steps = steps or p.steps