/* Copyright (c) 2025, MariaDB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */ /** @file Contains - estimate_post_group_cardinality() which estimates cardinality after GROUP BY operation is applied. - infer_derived_key_statistics() to infer index statistics for potential indexes on derived tables that have data produced with a GROUP BY operation. */ #include "mariadb.h" #include "sql_priv.h" #include "sql_select.h" #include "sql_statistics.h" #include "opt_trace.h" #include "sql_lex.h" #include "opt_group_by_cardinality.h" static double estimate_table_group_cardinality(JOIN *join, Item ***group_list, Item* const *end); inline bool has_one_bit_set(table_map val) { return val && !(val & (val-1)); } /* @brief Sort the Items that refer to one table (so have only one bit in used_tables()). Used to get the items that refer to the same table to be next to each other. */ int cmp_items_by_used_tables(const void *a_val, const void *b_val) { table_map v1= (*((Item**)a_val))->used_tables(); table_map v2= (*((Item**)b_val))->used_tables(); return v1 > v2 ? 1 : (v1 < v2 ? -1 : 0); } /* @brief Given a SELECT with GROUP BY clause, estimate the cardinality of output after the grouping operation is performed. @detail Consider a query SELECT ... FROM t1, t2, t3 ... WHERE ... GROUP BY col1, col2, ... Join optimizer produces an estimate of number of record combinations we'll get after all join operations are performed (denote this join_output_card). This function produces a conservative (i.e. upper bound) estimate of how many groups will be produced by the GROUP BY operation. It does it as follows: * Split the GROUP BY clause into per-table lists. (if there are GROUP BY items that refer to multiple tables, refuse to work and return join_output_card). * Compute n_groups estimate for each table and its GROUP BY sub-list. * Compute a product of these estimates, n_groups_prod. * Return MIN(join_ouput_card, n_groups_prod). @param join_output_card Number of rows after join operation @return Number of rows that will be left after grouping operation */ double estimate_post_group_cardinality(JOIN *join, double join_output_card) { Dynamic_array group_cols(join->thd->mem_root); ORDER *cur_group; Json_writer_object wrapper(join->thd); Json_writer_object trace(join->thd, "materialized_output_cardinality"); trace.add("join_output_cardinality", join_output_card); /* Walk the GROUP BY list and put items into group_cols array. Array is easier to work with: we will sort it and then produce estimates for sub-arrays that refer to just one table. Also check that each item depends on just one table (if not, bail out). */ for (cur_group= join->group_list; cur_group; cur_group= cur_group->next) { Item *item= *cur_group->item; table_map map= item->used_tables(); if ((map & PSEUDO_TABLE_BITS) || !has_one_bit_set(map)) { /* Can't estimate */ return join_output_card; } group_cols.append(item); } DBUG_ASSERT(group_cols.size()); group_cols.sort(cmp_items_by_used_tables); double new_card= 1.0; Item **pos= group_cols.front(); Json_writer_array trace_steps(join->thd, "estimation"); while (pos != group_cols.end()) { new_card *= estimate_table_group_cardinality(join, &pos, group_cols.end()); if (new_card > join_output_card) return join_output_card; } trace_steps.end(); trace.add("post_group_cardinality", new_card); return new_card; } /* @brief Compute number of groups for a GROUP BY list that refers to a single table @detail Consider a query: SELECT ... FROM t1, t2, t3 ... WHERE ... GROUP BY t1.col1, ... t1.colN -- expressions only refer to t1. The number of groups is estimated using the following: == 1. Use found_records == There cannot be more rows than the number of records in t1 that match the WHERE clause, that is, JOIN_TAB(t1)->found_records. This estimate doesn't depend on the expressions in the GROUP BY list, so we use it as a fall-back estimate. == 2. Use index statistics == If t1 has an INDEX(col1, ... colN) then the number of different combinations of {col1, ..., colN} can be obtained from index statistics. It is possible to cover the GROUP BY list with several indexes (without overlaps) and use a product of n_distinct statistics. For example, for GROUP BY key1part1, key1part2, key2part1, key2part2, key2part3 the estimate would be: n_groups= n_distinct(key1, parts=2) * n_distinct(key2, parts=3) There can be multiple ways one can cover GROUP BY list with different indexes. We try to use indexes that cover more GROUP BY columns, first. This may cause us to fail later. For example, for GROUP BY a, b, c, d and indexes INDEX idx1(a,b,c) INDEX idx2(a,b) INDEX idx3(c,d) We will use idx1 and then will be unable to get any estimate for column d. We could have used idx2 and idx3, instead, and could have covered all columns. We ignore such cases. Note that when using index statistics, we ignore the WHERE condition selectivity. That's because we cannot tell how the WHERE affects index stats. Does it A. reduce the number of GROUP BY groups, or B. make each GROUP BY group smaller ? We conservatively assume that B holds. == 3 Use per-column EITS statistics == If we fail to cover GROUP BY with indexes, we try to use column statistics for the remaining columns. @param join the Join object we're computing for @param group_list INOUT Array of Item* from GROUP BY clause, ordered by table. This function should process the table it is pointing to, and advance the pointer so it points at 'end' or at the next table. @param end IN End of the above array. */ double estimate_table_group_cardinality(JOIN *join, Item ***group_list, Item* const *end) { TABLE *table= NULL; key_map possible_keys; Dynamic_array columns(join->thd->mem_root); double card= 1.0; double table_records_after_where= DBL_MAX; // Safety table_map table_bit= (**group_list)->used_tables(); /* join->map2table is not set yet, so find our table in JOIN_TABs. */ for (JOIN_TAB *tab= join->join_tab; tab < join->join_tab + join->top_join_tab_count; tab++) { if (tab->table->map == table_bit) { table= tab->table; table_records_after_where= rows2double(tab->found_records); break; } } DBUG_ASSERT(table); Json_writer_object trace_obj(join->thd); trace_obj.add_table_name(table); Json_writer_array trace_steps(join->thd, "steps"); possible_keys.clear_all(); bool found_complex_item= false; /* Walk through the group list and collect references to fields. If there are other kinds of items, return table's cardinality. */ Item **p; for (p= *group_list; p != end && (*p)->used_tables() == table_bit; p++) { Item *real= (*p)->real_item(); if (real->type() == Item::FIELD_ITEM) { Field *field= ((Item_field*)real)->field; possible_keys.merge(field->part_of_key); columns.append(field->field_index); } else found_complex_item= true; } /* Tell the caller where group_list ended */ *group_list= p; if (found_complex_item) goto whole_table; possible_keys.intersect(table->keys_in_use_for_query); /* Ok, group_list has only columns and we've got them in 'columns'. */ while (!possible_keys.is_clear_all()) { /* Find the index which has the longest prefix covered by columns. */ uint longest_key= UINT_MAX; int longest_len= 0; key_map::Iterator key_it(possible_keys); uint key; while ((key= key_it++) != key_map::Iterator::BITMAP_END) { const KEY *keyinfo= table->key_info + key; /* Find the length of index prefix covered by GROUP BY columns */ int part; for (part= 0; part < (int)keyinfo->usable_key_parts; part++) { uint field_index= keyinfo->key_part[part].field->field_index; if (columns.find_first(field_index) == columns.NOT_FOUND) break; } if (part > 0) // At least one column is covered { /* Make sure the index has statistics available */ if (!keyinfo->actual_rec_per_key(part - 1)) { possible_keys.clear_bit(key); continue; } if (part > longest_len) { longest_len= part; longest_key= key; } } else { /* The index can't cover even one-column prefix. Remove it from consideration. */ possible_keys.clear_bit(key); } } if (longest_key == UINT_MAX) break; // No indexes are usable, stop. possible_keys.clear_bit(longest_key); /* Multiply cardinality by index prefix's cardinality */ const KEY *keyinfo= table->key_info + longest_key; double index_card= (rows2double(table->stat_records()) / keyinfo->actual_rec_per_key(longest_len-1)); /* Safety in case of inconsistent statistics: */ set_if_bigger(index_card, 1.0); Json_writer_object trace_idx(join->thd); trace_idx.add("index_name", keyinfo->name) .add("cardinality", index_card); card *= index_card; if (card > table_records_after_where) goto whole_table; /* Remove the columns we've handled from consideration */ for (int part= 0; part < longest_len; part++) { uint field_index= keyinfo->key_part[part].field->field_index; size_t idx= columns.find_first(field_index); if (idx != columns.NOT_FOUND) columns.del(idx); else DBUG_ASSERT(0); // Can't happen, we've found it above. } if (!columns.size()) break; // If we've covered all columns, stop. } /* If there are some columns left for which we couldn't get cardinality from index statistics, try getting it from columns' histograms */ for (size_t i=0; i < columns.size(); i++) { double freq; Field *field= table->field[columns.at(i)]; if (!field->read_stats || (freq= field->read_stats->get_avg_frequency()) == 0.0) goto whole_table; double column_card= rows2double(table->stat_records()) / freq; Json_writer_object trace_col(join->thd); trace_col.add("column", field->field_name) .add("cardinality", column_card); card *= column_card; if (card > table_records_after_where) goto whole_table; } normal_exit: trace_steps.end(); trace_obj.add("cardinality", card); return card; whole_table: card= table_records_after_where; goto normal_exit; } /** @brief Return the number of keypart that matches the item, -1 if there is no match */ static int item_index_in_key(Item *item, const KEY *keyinfo, uint key_parts) { if (item->real_item()->type() == Item::FIELD_ITEM) { for (uint i= 0; i < key_parts; i++) { if (!cmp(item->name, keyinfo->key_part[i].field->field_name)) return (int)i; } } return -1; } /** @brief Return TRUE if every item in the list appears in our key */ static bool all_list_contained_in_keyparts(const KEY *keyinfo, uint key_parts, SQL_I_List *list) { for (ORDER *grp= list->first; grp; grp= grp->next) { if (item_index_in_key((*grp->item), keyinfo, key_parts) < 0) return FALSE; } return TRUE; } /** @brief When adding a key to a materialized derived table, we can determine some key statistics from the query block. @detail Currently, we can infer this 1) rec_per_key[n-1] (# records for each full key value), when :- a) the last query set operation in the chain is not a UNION ALL, implying that duplicate rows are removed, so if the select list matches the key, we will have one record per distinct key b) the query within the block has the DISTINCT flag set, and the select list matches our key, we will have one record per distinct key. c) The group by list in the query is a subset of our key, we will have one record per key. @todo It is also possible to use predicates combined with existing key or histogram statistics on the base tables in our derived table to fill in this and other attributes of our generated key */ void infer_derived_key_statistics(st_select_lex_unit* derived, KEY *keyinfo, uint key_parts) { st_select_lex* select= derived->first_select(); Json_writer_object wrapper(derived->thd); Json_writer_object trace(derived->thd, "infer_derived_key_statistics"); trace.add("table_alias", keyinfo->table->alias.c_ptr()); trace.add("key_name", keyinfo->name); trace.add("key_parts", key_parts); /* This whole union/intersect of selects does NOT have the ALL flag, so if we have the same number of select list items as key parts, we can guarantee that each line in the result set is unique */ if (key_parts == select->item_list.elements && derived->check_distinct_in_union()) { trace.add("distinct_in_query_expression", TRUE); keyinfo->rec_per_key[key_parts - 1]= 1; } else { Json_writer_array select_proc(derived->thd, "select"); ulong rec_per_key= 0; bool all_selects_covered= TRUE; do { bool this_select_covered= FALSE; /* This is a SELECT DISTINCT query with $key_parts elements in the select list. This select in the union will produce one record per key. @todo If we come across multiple SELECT DISTINCT selects in this union have a problem in that we do not know anything about how they might intersect */ if (key_parts == select->item_list.elements && select->options & SELECT_DISTINCT) { select_proc.add("distinct_in_query_block"); this_select_covered= TRUE; rec_per_key++; } /* This is a grouping select and the group list is a subset of our key. Our key can have additional fields, the rows will still be unique. */ if (select->group_list.elements && all_list_contained_in_keyparts(keyinfo, key_parts, &select->group_list)) { select_proc.add("group_list_in_key"); this_select_covered= TRUE; rec_per_key++; } if (!this_select_covered) { select_proc.add("unhandled query"); all_selects_covered= FALSE; } } while ((select= select->next_select())); select_proc.end(); /* If we do not cover all selects here, do not update keyinfo->rec_per_key[key_parts - 1] at all */ if (all_selects_covered) { keyinfo->rec_per_key[key_parts - 1]= rec_per_key; trace.add("rec_per_key_estimate", rec_per_key); } } }